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Target: Low-Power (LP) Coprocessor
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Challenges in LP Coprocessor Programming
• No Memory Protection on LP coprocessor

Access to invalid pointer occurs undefined behavior (random 
value/system freeze).

• Separated Memory Space
To share data between processors, developers must transfer them.

• Limited Memory
This requires only code to be executed must be loaded on the LP 
memory.

• Different ISAs in some targets
Developers must compile a program for each processor.
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ISA: Instruction Set Architecture



Challenges in LP Coprocessor Programming

• No Memory Protection in LP coprocessor

• Separated Memory Space

→ Our runtime system checks pointer validity and 
moves objects, automatically.

• Limited Memory

• Different ISAs in some targets

→ Our JIT compiler generates code to be executed.
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Overview of this talk

Purpose: Utilize LP coprocessors in managed languages.

1. Design considerations & Use-case: Sensing and buffering tasks

2. Key idea: Co-operative JIT compilation
• For small footprint, and to load only code to be actually executed.

• The main processor compiles the executed path into type-specialized basic 
blocks (LLBV) for the LP coprocessor, reusing the interpreter (trace-based JIT).

3. Object Management: Different format on each processor

4. Experiment: four mruby applications on ESP32-C6
• achieves power savings comparable to hand-written C.

• shows that the resulting code size is 2.4x to 6.6x larger than C.

5. Discussion & Related Work: Other languages, Comparison with 
systems for LP coprocessor
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Use-case: IoT Sensor

Copro#run offloads to the LP coprocessor.

sensor = SHT30.new(I2C.new())
result = Array.new(COUNT)
Copro.run do
i = 0
while i < COUNT do
v = sensor.read()# Read from the sensor.
break if v.nil?
# if the read failed, v will be nil.
result[i] = v
i += 1
Copro.delayMs(60*1000) # Sleep for 1 min.

end
end
# on Main Processor
Network.send(result) # Send the result.

Object-oriented features 
simplify I/O device abstraction.

Only code to be executed is 
allocated on the LP’s memory.

Objects are automatically 
transferred to the LP 
coprocessor.

Ruby



Design Considerations: Target Tasks

Sensor readings and buffering tasks are suitable for LP 
coprocessors.
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Sensor Reading,
Buffering Tasks

Signal Processing Tasks

Frequency High Low

Complexity Simple Complex

Power Saving Significant Marginal

Table. Experimental and analytical investigation the efficient use of LP coprocessors 
(summarized “PLATFORM DESIGN IMPLICATIONS” in  [43])

[43] Moo-Ryong Ra, Bodhi Priyantha, Aman Kansal, and Jie Liu. Improving Energy Efficiency of Personal 
Sensing Applications with Heterogeneous Multi-Processors. ACM UbiComp ’12



Design Considerations: Why JIT?

To allocate only code to be actually executed

•Managed languages have features that lead to larger 
code sizes.
• Dynamic dispatches: Difficult to know which code to be 

executed, Vtables
• Null-checks on each load/store (except for Rust, Swift, 

etc.)
• Type-checks on dynamically-typed languages

•Naïve AOT compilation would have to include all 
possible code paths.
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Key Idea: Co-operative JIT compilation
9

Main Processor
First Execution: Compile & Run

LP Coprocessor
Subsequent Executions: Run

Interpreter & JIT Compiler

Basic Block

…
Basic Block

Generated Code
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How the JIT Works: First Execution

The interpreter on Main
executes and compiles
like tracing JIT.

Stub

Main 
Processor

LP 
Coprocessor

Specialized with observed 
types like lazy basic block 
versioning (LBBV).

Basic Block
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How the JIT Works: Migration

Reaching any compiled basic 
block, the LP wakes up.
→ Then stack are 
transformed, and the LP 
executes the generated code.

Stub

Main 
Processor

LP 
Coprocessor

Already 
Compiled!
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How the JIT Works: Execution on LP coproc.

To reduce migrations, we 
delay them, while the 
original LBBV migrates after 
it compiles each basic block.

Stub

Main 
Processor

LP 
Coprocessor Reaching any compiled basic 

block, the LP wakes up.
→ Then stack are 
transformed, and the LP 
executes the generated code.
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How the JIT Works: Return to the main

Stub

Main 
Processor

LP 
Coprocessor

When an uncompiled basic 
block is encountered, it 
migrates back to the main 
processor (Deoptimization).

It jumps to a single stub 
function, which dumps all 
registers and wakes the main 
processor.
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How the JIT Works: Return to the main

Stub

Main 
Processor

LP 
Coprocessor

The basic block is compiled on 
the main processor, and the 
jump to the stub function is 
patched.

All uncompiled branches jump to 
this single stub function.
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How the JIT Works: Return to the main

Stub

Main 
Processor

LP 
Coprocessor

The basic block is compiled on 
the main processor, and the 
jump to the stub function is 
patched.

All uncompiled branches jump to 
this single stub function.
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Object Management

Object formats on the main and the LP are different.
Main Processor: Dictionary for dynamic features
LP coprocessor: Compact fixed-layout

Main Processor

Key Value

X

Y 10

Z NIL

Key Value

A 1

B 2

LP Coprocessor

10 NIL

1 2

Tagged Pointers

X Y Z
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Object Movement

A key invariant:
Objects referenced from the stack are copied to LP and type-checked.

For this invariant, checks are performed on reading non-local variables 
(instance variables, global variables, elements of collections) and 
transforming the stack.

• To simplify the implementation.
(No checks on types on each instructions on the code generation)

• To remove runtime checks on writes to instance variables.
(e.g., checks for foo in “foo.bar = 12”).

• To reduce main processor wake-ups; we assume that objects on the 
stack are likely to be used soon.
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Experiments

We implemented a prototype based on mruby/c.
4 Applications

TEMP
Temperature and humidity

measuring

WL
Water Level measuring
with ultrasonic sensor

LOC
Acceleration 
Measuring

BLED
Breathing LED

High (Always)750 s/min20 s/min1 samples/min

Frequency

Processing
Calculating Average Sorting and

Calculating Median
Toggling GPIOConstructing Objects
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Configurations

Configuration Language Processor

RM (original mruby/c) mruby Main

RL (ours) mruby LP

CM C Main

CL C LP

Configurations

The Evaluated Environment

Value

Main Freq. 80 MHz (minimum)

LP Freq. 20 MHz

Operating Voltage 3.3 V

Sample Rate 100 kHz

Ammeter & Source Nordic Power Profiler Kit II

Evaluation Board ESP32-C6-DevkitC-1 N8, v1.3

Sensors Simulated by ESP32

Ammeter

Sensor Sim.

ESP32-C6

Actual Sensors

Also tested with 
actual sensors.
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Results: Generated Code Size
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Results: Power Consumption

Power Saving is Comparable to C (±𝟎. 𝟖%)
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Results: Runtime Size

(RISC-V, RV32IMAC)

Main Processor
80.8 KiB (+35 %)
(mruby/c: 60 KiB → Ours: 80.8 KiB)

LP Coprocessor
5.24 KiB (of 16 KiB LP SRAM)

ESP32 Runtimes 2.2

ESP32 (I2C related) 0.9

Garbage Collector 1.0

Runtime (Stub func. etc.) 0.6

Peripheral Methods 0.5

Ranking:
1st JIT Compiler (+9.8 KiB)
2nd Object Management (+2.7 KiB)
3rd Stack Transformer (+2.3 KiB)

Original mruby/c runtime is over 40 KiB.
Our runtime on the LP coprocessor achieves the smaller size.

Main LP

etc etc

Orig. 
mruby/c

Compiler

Stub func.

GC



Discussion: Applicability to Other Languages

Object Management Challenges

Before dereferencing, runtime checks are required for object 
movement even in no GC languages and present challenges.

• C: limiting pointer arithmetic to guarantee the safety. (cf. Reflex [25])

• Rust: adapting Rust’s ownership model (implementation) to a distributed 
memory environment. (cf. DRust [28])

• WebAssembly: Linear memory model makes object-level coherence difficult. 
WasmGC may mitigate this problem.

Statically Typed Languages: Further evaluation is required.
• Lazy Basic Block Versioning may be less critical, as these languages require 

fewer runtime checks (e.g., for arithmetic operations).

• However, we believe that dynamic loading and linking are feasible because 
runtime checks for object movement remains.

23



24

Related Work
Reflex [25]

Cortex-M

Cortex-A
Linux

Transkernel [17]
Cortex-M

Cortex-A
Linux

Shared memory

ARM-A
Code

SideWinder [24]
Android

Microcontroller
and Sensors

MEM

MEM

I2C Predefined API
Bin. Tran.

Translated 
ARM-M Code

This Work

LP RISC-V
Main RISC-V

Main 
Memory

bytecode

Interp/JIT

LP Memory

Translated 
RISC-V Code

C with Software DSM
(Distributed Shared Memory)

JAVA

C

I2CC/C++

This Work Reflex Transkernel SideWinder

Yes Yes Programmable Only Kernel Limited

No Yes
Processors Work 
Simultaneously

No No

JIT on Main Static Compile? JIT on LP Interpreter on LP

mruby C/C++ Language Any (Bin. Trans.) Java (Main) / C(LP)

ESP32-C6 OMAP4 + MSP430 Target Example OMAP4 Nexus 4 +  MSP430



Conclusion
• The Challenge: Bridging the Gap between Productivity and Power 

Efficiency
• High-level managed languages are productive but have been impractical for 

resource-constrained LP coprocessors due to their large code footprint.

• Our Contribution: A Co-operative JIT Compilation
• We proposed a novel JIT design where the main CPU acts as a compilation server, 

generating specialized, compact native code for the LP coprocessor.
• This approach minimizes code size by compiling only executed paths and automates 

complex object management across heterogeneous cores.

• Key Result: Achieving Efficiency without Sacrificing Productivity
• Our (subset) mruby prototype demonstrates that it is possible to gain the 

productivity and safety of a managed language...
• ...while achieving power savings comparable to a low-level, handwritten C 

implementation.

• Impact: Enabling Simpler, Safer Development for Low-Power IoT
• This work makes it practical for developers to build ultra-low power applications 

more productively, paving the way for the next generation of sophisticated IoT 
devices.
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Key Idea: Co-operative JIT compilation
28

Main Processor
Compile & Execution at 1st time

Coprocessor
Execution at 2nd or later times

Stub

Compile executed basic blocks 
with specialization

1. Tracing Execution

2. Execution Migration (Main → LP)

3. Deoptimization on Uncompiled 
branches (LP → Main)
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Related Work
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Discussion: Limitation

• If the generated code exceeds the LP memory, the code is 
discarded, and the compiler recompiles.

→ Too large or pathological programs occur continuous 
recompilation (“thrashing”). 
→ Developers must be mindful of this constraint.

• Threats to Validity
• Implemented prototype supports a subset of mruby.

• ESP-IDF SDK is unstable, currently.

• Runtime functions (including peripheral drivers) written in C must be 
pre-allocated. (not on demand)

→ Requires a dedicated dynamic loading infrastructure.
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Stack Transformation

The LP coprocessor uses different stack to reduce code 
and stack size.

VM Registers (mruby is a register machine) are one-to-
one mapped to LP Coprocessors’ RISC-V registers.

Main Processor: original mruby/c VM activation record
LP Coprocessor: native stack

Note: We do not currently support closures (blocks).
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Application Examples
def read()
    @i2c.write(DEV_ADDR, CMD_MID_REPEAT_READ)
    Copro.delayMs(6)
    data = @i2c.read(DEV_ADDR, 6)
    if data.size == 0 then
      return nil
    end
    t_ticks = (data.getbyte(0) << 8) + data.getbyte(1)

rh_ticks = (data.getbyte(3) << 8) + data.getbyte(4)
t_degC = ((t_ticks * 175)/0xFFFF) – 45 # temprerature

    rh_pRH = ((rh_ticks * 100)/0xFFFF) # humidity
…

Decode the 
received packet.

def sort!(ary)
# bubble sort
swapped = true
while (swapped) do
swapped = false
i = 0
while i < ary.length-1 do
aryi = ary[i]
aryi1 = ary[i+1]
if aryi > aryi1 then

ary[i] = aryi1
ary[i+1] = aryi
swapped = true

end
i += 1

end
end

end

Bubble sort

def read()
@i2c.write(DEV_ADDR, CMD_FIFO)
Copro.delayMs(5)
val = @i2c.read(DEV_ADDR, 6)
return nil if val.size == 0
ADXLResult.new(conv(val, 0), conv(val, 2), conv(val, 4))

end

Constructing 
objects
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Heterogeneous Microcontrollers

Main Proc Main Memory LP Coproc Memory Interconnect

SG2002 Cortex-A/RISC-V DRAM 8051 8 KiB AXI?

Arduino Uno Q Cortex-A DRAM Cortex-M 786 KiB UART?

NXP i.MX93 Cortex-A DRAM Cortex-M 256 KiB AXI

Infenion PSoC 62 Cortex-M4 128 KiB – 1MiB Cortex-M0 Min. 32 KiB AXI

ESP32 Xtensa 520 KiB Original 8 KiB AXI?

ESP32-S3 Xtensa 512 KiB RV32IMC 8 KiB AXI?

ESP32-C5 RV32IMAC 364 KiB RV32IMAC 16 KiB AXI?

ESP32-P4 RV32IMACF… 768 KiB RV32IMAC 24 Ki / 20 Ki AXI?

LPC4350 Cortex-M4 264 KiB Cortex-M0 Min. 72 KiB AXI

i.MX RT 1160 Cortex-M7 1 MiB Cortex-M4 256 KiB AXI

nRF54L15 Cortex-M33 256 KiB RV32EMC ? ?

Analog Devices 
MAX32655

Cortex-M4F 128 KiB RV32I 16-48 KiB AXI



Implementations for Resource-constrained Devices

NanoVM KVM μLISP Ribbit PikaPython mruby/c

Source (Java) (Java) Lisp Scheme (Python) (Ruby)

Intermediate JVM bc. JVM bc. S-exp. Ribbit Original mruby

Target AVR StrongARM AVR etc. Linux ARM, Xtensa PIC24 etc.

Implementation Interpreter MethodJIT Interpreter Interpreter Interpreter Interpreter

Req. RAM [KiB] 1 8 2 ≧ 8 ? 4 small

Req. ROM [KiB] 8 60 32 4 - 7
(lies on  syscalls)

32 50

NanoVM: Till Harbaum-Impressum, http://www.harbaum.org/till/nanovm/index.shtml
KVM: Nik Shaylor (Sun Microsystems), A Just-In-Time compiler for memory constrained low-power devices. JVM’02
μLisp: David Johnson-Davies, http://www.ulisp.com/ 
Ribbit: Leonard Oest O'Leary, Mathis Laroche and Marc Feeley, An R4RS compliant REPL in 7KB in SCHEME Workshop
PikaPython: lyon李昂, https://github.com/pikasTech/pikaPython 

http://www.harbaum.org/till/nanovm/index.shtml
http://www.ulisp.com/
https://arxiv.org/abs/2310.13589
https://github.com/pikasTech/pikaPython


Other Languages
Typing Object

Metadata
Expando Unmanaged Pointers

Ruby Dynamic (Nominal) Yes △ × (FFI)

Python Dynamic (Nominal) Yes ○ × (FFI)

TypeScript Dynamic (Structual) Yes ○ × (FFI)

Static TypeScript Both (Nominal) Yes △ (Hash) × (FFI)

C# Both (Nominal)
(dynamic)

Yes △
(ExpandoObject)

△ (unsafe)

Java Static Yes × × (FFI)

Go Static No × × (JNI)

Rust Static No × △ (unsafe)

Desired - Yes △/× △/×

Implementations for ESP32 (No port work is required)
Ruby, Python, JS, C#, Go, Rust : Ported
Java : FlintESPJVM (2024/5?-) MicroEJ = closed? ，NanoVM = not ported yet.



Expando

class Foo:
def __init__(self)
self.bar = 0

h = Foo ()
h.buzz = 0 # Expando

class Foo
def initialize()
@bar = 0; end; end

h = Foo.new ()
h.@buzz = 0  # SyntaxError
h.buzz = 0   # NameError
# not expandable.

Python Ruby

Cf. https://developer.mozilla.org/ja/docs/Glossary/Expando

In Ruby, expanding requires special 
class/method syntax.

https://developer.mozilla.org/ja/docs/Glossary/Expando


Overhead on migration

• Time
• Processor wake-ups: main 0.58 ms and LP 0.02 ms (in WIP paper)

• Object transformation: Proportional to the heap size

• Stack transformation: Proportional to the call depth

• Power
• Less than the WiP paper: less than 25 mA × elapsed time.
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Runtime Size Comparison with LBBV (preliminary)

• Ours: 22.49 KiB
• A single interpreter: 22.49 KiB

• LBBV-based (preliminary evaluation): 28.78 KiB
• Original mruby/c interpreter: 12.69 KiB

• Compiler (stripping down our modified interpreter to its code-generation 
logic): 16.09 KiB

• Size Reduction: 22% (6.29 KiB)
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Experiments
42

ESP32-C6

Ammeter
(Power Profiler Kit 

2)

Sensor Sim.
(ESP32)

Power 
Source
(3.3V)

Signal (Copro.run)

Log

Signal
(GPIO/I2C)

3.3V
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