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Target: Low-Power (LP) Coprocessor

SoCs with LP coprocessors are found in a
variety of embedded devices.
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Challenges in LP Coprocessor Programming

* No Memory Protection on LP coprocessor

Access to invalid pointer occurs undefined behavior (random
value/system freeze).

* Separated Memory Space
To share data between processors, developers must transfer them.

* Limited Memory
This requires only code to be executed must be loaded on the LP
memory.

* Different ISAs in some targets
Developers must compile a program for each processor.

ISA: Instruction Set Architecture



Challenges in LP Coprocessor Programming

* No Memory Protection in LP coprocessor
e Separated Memory Space

- Our runtime system checks pointer validity and
moves objects, automatically.

* Limited Memory
* Different ISAs in some targets

-> Our JIT compiler generates code to be executed.



Overview of this talk

Purpose: Utilize LP coprocessors in managed languages.
1. Design considerations & Use-case: Sensing and buffering tasks

2. Key idea: Co-operative JIT compilation
* For small footprint, and to load only code to be actually executed.

* The main processor compiles the executed path into type-specialized basic
blocks (LLBV) for the LP coprocessor, reusing the interpreter (trace-based JIT).

3. Object Management: Different format on each processor

Experiment: four mruby applications on ESP32-C6
* achieves power savings comparable to hand-written C.
e shows that the resulting code size is 2.4x to 6.6x larger than C.

5. Discussion & Related Work: Other languages, Comparison with
systems for LP coprocessor



Use-case: |loT Sensor

Copro#run offloads to the LP coprocessor.

sensor = SHT30.new(I2C.new()) Ru by
result = Array.new(COUNT)
Copro.run do

1 =20
while i < COUNT do
= sensor.read()# Read from the sensor.
break if v.nil?
# if the read failed, v will be nil.
result[i] = v
i+=1
Copro.delayMs(60*1000) # Sleep for 1 min.
end
end
# on Main Processor
Network.send(result) # Send the result.

Object-oriented features
simplify 1/O device abstraction.

Only code to be executed is
allocated on the LP’s memory.

Objects are automatically
transferred to the LP
COProcessor.



Design Considerations: Target Tasks

Sensor readings and buffering tasks are suitable for LP
coprocessors.

Table. Experimental and analytical investigation the efficient use of LP coprocessors
(summarized “PLATFORM DESIGN IMPLICATIONS” in [43])

Sensor Reading, Signal Processing Tasks
Buffering Tasks

Frequency High Low
Complexity Simple Complex
Power Saving Significant Marginal

[43] Moo-Ryong Ra, Bodhi Priyantha, Aman Kansal, and Jie Liu. Improving Energy Efficiency of Personal
Sensing Applications with Heterogeneous Multi-Processors. ACM UbiComp 12



Design Considerations: Why JIT?

To allocate only code to be actually executed

* Managed languages have features that lead to larger
code sizes.

* Dynamic dispatches: Difficult to know which code to be
executed, Vtables

* Null-checks on each load/store (except for Rust, Swift,
etc.)

* Type-checks on dynamically-typed languages

* Naive AOT compilation would have to include all
possible code paths.



Key Idea: Co-operative JIT compilation

Main Processor
First Execution: Compile & Run

mruby bytecode
-
Interpreter & JIT Compiler

Interpreter
activation
record

Dictionary-
style objects

Sy Generated Code
lee traCing .”T m Basic Block Basic Block

LP Coprocessor
Subsequent Executions: Run

Like LBBV

Struct-style
objects




How the JIT Works: First Execution

Basic Block

The interpreter on Main
executes and compiles
like tracing JIT.

Specialized with observed
types like lazy basic block
versioning (LBBV).
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How the JIT Works: Migration

\YETT LP : . .
Processor Coprocessor ReaChmg any complled basic

block, the LP wakes up.

— Then stack are
transformed, and the LP
executes the generated code.

Already
Compiled!
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How the JIT Works: Execution on LP coproc.

Main LP
Processor Coprocessor

Reaching any compiled basic
block, the LP wakes up.

— Then stack are
transformed, and the LP
executes the generated code.

To reduce migrations, we
delay them, while the
original LBBV migrates after
it compiles each basic block.
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How the JIT Works: Return to the main

Main
Processor

LP
Coprocessor

When an uncompiled basic
block is encountered, it
migrates back to the main
processor (Deoptimization).

It jumps to a single stub
function, which dumps all

registers and wakes the main
pProcessor.
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How the JIT Works: Return to the main

— LP The basic block is compiled on
Processor Coprocessor .
the main processor, and the

jump to the stub function is
patched.

All uncompiled branches jump to
this single stub function.
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How the JIT Works: Return to the main

— LP The basic block is compiled on
Processor Coprocessor .
the main processor, and the

jump to the stub function is
patched.

All uncompiled branches jump to
this single stub function.

15
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Object Management

Object formats on the main and the LP are different.

Main Processor: Dictionary for dynamic features
LP coprocessor: Compact fixed-layout

Main Processor LP Coprocessor
\io L
Y 10
VA NIL

Tagged Pointers
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Object Movement

A key invariant:

Objects referenced from the stack are copied to LP and type-checked.
For this invariant, checks are performed on reading non-local variables
(instance variables, global variables, elements of collections) and
transforming the stack.

 To simplify the implementation.
(No checks on types on each instructions on the code generation)

* To remove runtime checks on writes to instance variables.
(e.g., checks for foo in “foo.bar = 127).

* To reduce main processor wake-ups; we assume that objects on the
stack are likely to be used soon.
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Experiments

We implemented a prototype based on mruby/c.

L

TEMP LOC BLED
Temperature and humidity =~ Water LeveI measuring Acceleration Breathing LED
measuring with ultrasonic sensor Measuring

Frequency

20 s/min 750 s/min High (Always)

1 samples/min

Processing
Constructing Objects Calculating Average Sorting and Toggling GPIO
Calculating Median
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Configurations

Configurations

Configuration

RM (original mruby/c) mruby Main

RL (ours) mruby LP
cM C Main
CL C LP

The Evaluated Environment

| vale

Main Freq. 80 MHz (minimum)

LP Freq. 20 MHz

Operating Voltage 33V

Sample Rate 100 kHz - TR o

Ammeter & Source  Nordic Power Profiler Kit Il .‘ Also tested with

Evaluation Board ESP32-C6-DevkitC-1 N8, v1.3
Sensors Simulated by ESP32

actual sensors.




Results: Generated Code Size

Main

LP

Because of runtime checks, complex tasks tend to be larger code size.

5 [KiB] 6.6X
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Processing

Constructing Objects Calculating Average Sorting and
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B Metadata
B Code Size
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Results: Power Consumption

Power Saving Rate

84.6 :
oueo | ;2 b
38.9

Power Consumption in First 10

Frequency [m)] lterations (LOC)
20 On Main
18 oo o on an en e an or e ar ar e e e
e T TTTTT=====
14
" .32 1(2) On LP
CM [J] = CL or RL[]] 8
TEMP | o' CMOT (% 7
Low ol ¢
. 0 100 -'CTJ ) -CM —CL =-=-RM —RL
mC Emruby [%] Of o

Power Saving is Comparable to C (+0. 8%)

1 2 3 4 5 6 7 8 9 [#]

We observed an initial overhead during
the first few iterations, caused by JIT
compilation and object transfers.
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Results: Runtime Size
(RISC-V, RV32IMAC)

Main Processor LP Coprocessor
80.8 KiB (+35 %) 5.24 KiB (of 16 kiB LP srRAM)
(mruby/c: 60 KiB = Ours: 80.8 KiB)
ESP32 Runtimes 2.2

Ranking: ESP32 (12C related) 0.9

15t JIT Compiler (+9.8 KiB) Garbage Collector 1.0

24 Object Management (+2.7 KiB) Runtime (Stub func. etc.) 0.6

3'd Stack Transformer (+2.3 KiB) Peripheral Methods 0.5

Original mruby/c runtime is over 40 KiB.
Our runtime on the LP coprocessor achieves the smaller size.

22
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Discussion: Applicability to Other Languages

Object Management Challenges

Before dereferencing, runtime checks are required for object
movement even in no GC languages and present challenges.
 C: limiting pointer arithmetic to guarantee the safety. (cf. Reflex [25])

* Rust: adapting Rust’s ownership model (implementation) to a distributed
memory environment. (cf. DRust [28])

* WebAssembly: Linear memory model makes object-level coherence difficult.
WasmGC may mitigate this problem.
Statically Typed Languages: Further evaluation is required.

* Lazy Basic Block Versioning may be less critical, as these languages require
fewer runtime checks (e.g., for arithmetic operations).

* However, we believe that dynamic loading and linking are feasible because
runtime checks for object movement remains.




Related Work
This Work

Main RISC-V

Reflex [25]

Cortex-A
Linux

C/C++

LP RISC-V

Translated
RISC-V Code

LP Memory

Intero/JIT

Cortex-M
MEM

Main
Memory

C with Software DSM
(Distributed Shared Memory)

This Work
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Transkernel [17] SideWinder [24]

Cortex-M

Cortex-A Android

Linux

A
ARM-A rans ted
Code ARM-M Code

Shared memory

Bin. Tran.

Predefined API

Microcontroller
and Sensors

Yes Yes Programmable Only Kernel Limited
No Yes Simutaneously No No
JIT on Main Static Compile? JIT on LP Interpreter on LP
mruby C/C++ Language Any (Bin. Trans.) Java (Main) / C(LP)
ESP32-C6 OMAP4 + MSP430 Target Example OMAP4 Nexus 4 + MSP430



25
Conclusion

* The Challenge: Bridging the Gap between Productivity and Power
Efficiency

* High-level managed languages are productive but have been impractical for
resource-constrained LP coprocessors due to their large code footprint.

* Our Contribution: A Co-operative JIT Compilation

* We proposed a novel JIT design where the main CPU acts as a compilation server,
generating specialized, compact native code for the LP coprocessor.

* This approach minimizes code size by compiling only executed paths and automates
complex object management across heterogeneous cores.

* Key Result: Achieving Efficiency without Sacrificing Productivity

e Our (subset) mruby prototype demonstrates that it is possible to gain the
productivity and safety of a managed language...

 ...while achieving power savings comparable to a low-level, handwritten C
implementation.

* Impact: Enabling Simpler, Safer Development for Low-Power loT

* This work makes it practical for developers to build ultra-low power applications
[jnO(e productively, paving the way for the next generation of sophisticated loT
evices.
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Key Idea: Co-operative JIT compilation

Main Processor Coprocessor
Compile & Execution at 15t time Execution at 2"9 or later times

~_~ 1. Tracing Execution
L

~~ |
Compile executed basic blocks

with specialization
-

2. Execution I\/I| ratlon (Mam - LP)

y. 4
‘-_

3. Deoptimization on Uncompiled

branches (LP - Main)
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This Work
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Discussion: Limitation

* If the generated code exceeds the LP memory, the code is
discarded, and the compiler recompiles.

-> Too large or pathological programs occur continuous
recompilation (“thrashing”).
- Developers must be mindful of this constraint.

* Threats to Validity
* Implemented prototype supports a subset of mruby.
* ESP-IDF SDK is unstable, currently.

e Runtime functions (including peripheral drivers) written in C must be
pre-allocated. (not on demand)

—> Requires a dedicated dynamic loading infrastructure.
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Stack Transformation

The LP coprocessor uses different stack to reduce code
and stack size.
Main Processor: original mruby/c VM activation record
LP Coprocessor: native stack

VM Registers (mruby is a register machine) are one-to-
one mapped to LP Coprocessors’ RISC-V registers.

Note: We do not currently support closures (blocks).



Application Examples

def read()

@i2c.write(DEV_ADDR, CMD MID REPEAT_READ) Decode the

Copro.delayMs(6)

data = @i2c.read(DEV_ADDR, 6) received packet.

if data.size == 0 then
return nil

end

t_ticks = (data.getbyte(9) << 8) + data.getbyte(1)

rh_ticks = (data.getbyte(3) << 8) + data.getbyte(4)

t degC = ((t_ticks * 175)/0xFFFF) - 45 # temprerature

rh_pRH = ((rh_ticks * 100)/0xFFFF) # humidity

Constructing
def read()

@i2c.write(DEV_ADDR, CMD_FIFO) ObjeCtS

Copro.delayMs(5)

val = @i2c.read(DEV_ADDR, 6)

return nil if val.size ==

ADXLResult.new(conv(val, @), conv(val, 2), conv(val, 4))
end

Bubble sort

def sort!(ary)
# bubble sort
swapped = true
while (swapped) do
swapped = false
i=20
while i < ary.length-1 do
aryi = ary[i]
aryil = ary[i+1]
if aryi > aryil then
arv[i] = arvil

32



Heterogeneous Microcontrollers

S$G2002 Cortex-A/RISC-V DRAM 8051 8 KiB AXI?
Arduino Uno Q Cortex-A DRAM Cortex-M 786 KiB UART?
NXP i.MX93 Cortex-A DRAM Cortex-M 256 KiB AXI
Infenion PSoC 62 Cortex-M4 128 KiB — 1MiB Cortex-MO Min. 32 KiB  AXI
ESP32 Xtensa 520 KiB Original 8 KiB AXI?
ESP32-S3 Xtensa 512 KiB RV32IMC  8KiB AXI?
ESP32-C5 RV32IMAC 364 KiB RV32IMAC 16 KiB AXI?
ESP32-P4 RV32IMACEF... 768 KiB RV32IMAC 24 Ki/20Ki AXI?
LPC4350 Cortex-M4 264 KiB Cortex-MO Min. 72 KiB  AXIl
i.MX RT 1160 Cortex-M7 1 MiB Cortex-M4 256 KiB AXI
NRF54L15 Cortex-M33 256 KiB RV32EMC ? ?
Analog Devices Cortex-MA4F 128 KiB RV32| 16-48 KiB AXI

MAX32655



Implementations for Resource-constrained Devices

NanoVM KVM MLISP Ribbit PikaPython mruby/c
Source (Java) (Java) Lisp Scheme (Python) (Ruby)
Intermediate JVM bc. JVM bc. S-exp. Ribbit Original mruby
Target AVR StrongARM AVR etc. Linux ARM, Xtensa PIC24 etc.
Implementation Interpreter MethodJIT Interpreter Interpreter Interpreter Interpreter
Req. RAM [KiB] 1 8 2 =87 4 small
Req. ROM [KiB] 8 60 32 4-7 32 50

(lies on syscalls)

NanoVM: Till Harbaum-Impressum, http://www.harbaum.org/till/nanovm/index.shtm|

KVM: Nik Shaylor (Sun Microsystems), A Just-In-Time compiler for memory constrained low-power devices. JVM’02
uLisp: David Johnson-Davies, http://www.ulisp.com/

Ribbit: Leonard Oest O'Leary, Mathis Laroche and Marc Feeley, An R4RS compliant REPL in 7KB in SCHEMIE Workshop
PikaPython: lyon Z=Ep, https://github.com/pikasTech/pikaPython



http://www.harbaum.org/till/nanovm/index.shtml
http://www.ulisp.com/
https://arxiv.org/abs/2310.13589
https://github.com/pikasTech/pikaPython

Other Languages

Typing Object Expando Unmanaged Pointers
Metadata
Ruby Dynamic (Nominal) Yes JAN X (FFI)
Python Dynamic (Nominal) Yes X (FF1)
TypeScript Dynamic (Structual) Yes _ X (FFI)
Static TypeScript Both (Nominal) Yes /\ (Hash) X (FF1)
Ctt Both (Nominal) Yes JAN /\ (unsafe)
(dynamic) (ExpandoObject)
Java Static Yes X X (FFI)
Go Static X X (JNI)
Rust Static _ X /\ (unsafe)

Desired - Yes YAV P A[X

Implementations for ESP32 (No port work is required)

Ruby, Python, JS, C#, Go, Rust : Ported
Java : FlintESPJVM (2024/5?-) MicroEJ = closed? , NanoVM = not ported yet.



Expando

Python
class Foo:
def init (self)
self.bar = 0
h = Foo ()
h.buzz = @ # Expando

Ruby

class Foo
def initialize()
@bar = 0; end; end
N = Foo.new ()
n.@buzz = @ # SyntaxError
n.buzz = @ # NameError
# not expandable.

In Ruby, expanding requires special
class/method syntax.

Cf. https://developer.mozilla.org/ja/docs/Glossary/Expando



https://developer.mozilla.org/ja/docs/Glossary/Expando

Overhead on migration

* Time
* Processor wake-ups: main 0.58 ms and LP 0.02 ms (in WIP paper)
* Object transformation: Proportional to the heap size
 Stack transformation: Proportional to the call depth

* Power
* Less than the WiP paper: less than 25 mA X elapsed time.

& Lock Y-axis (@ oms 100ms

30 mA
25 mA
20 mA
15 mA

10 mA
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Table 4. Runtime Code Size on the LP coprocessor [KiB]

Size | Description
ESP Runtime | 2.23 | Functions by ESP-IDF
ESP I°C | 0.86 | Functions for I°C
Our GC | 1.03 | Mark and sweep GC
Our Runtime | 0.64 | stub, get_instance_variable, etc.
Copro methods | 0.48 | I°C, Coprot#delayMs, etc.
Sum | 5.24




Table 5. Runtime Code Size on the Main Processor [KiB]

text & .rodata .data & .bss
Ours 78.12 2.60
Original 57.49 2.50

Table 6. Generated Code and Metadata Size [B]

RL CL

Generated Code Metadata | Code Size
BLED 422 1403 172
LOC 1742 4600 262
WL 1246 3886 240
TEMP 950 2425 200

Table 7. Power Consumption []J]

RM RL CM CL

BLED | 156 5.49 160 5.47
BLED" | 355 N/A 357 N/A
LOC | 393 237 385 2.40
WL 249 2.25 251 225
TEMP | 2.29 2.27 228 2.27
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Runtime Size Comparison with LBBV (preliminary)

* Ours: 22.49 KiB
* Asingle interpreter: 22.49 KiB

e LBBV-based (preliminary evaluation): 28.78 KiB

 Original mruby/c interpreter: 12.69 KiB

* Compiler (stripping down our modified interpreter to its code-generation
logic): 16.09 KiB

* Size Reduction: 22% (6.29 KiB)
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Experiments

Ammeter
(Power Profiler Kit
2)
Eiglnal (Copro.run)
Power
ESP32-C6
Source

(3.3V)

Sensor Sim.
(ESP32)
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