
Functional Reactive EDSL with Asynchronous
Execution for Resource-Constrained Embedded

Systems∗

Sheng Wang† Takuo Watanabe‡

Department of Computer Science, Tokyo Institute of Technology

June 1, 2019

Abstract

This paper presents a functional reactive embedded domain-specific language
(EDSL) for resource-constrained embedded systems and its efficient execution
method. In the language, time-varying values changes at discrete points of time
rather than continuously. Combined with a mechanism to let users designate the
update interval of values, it is possible to derive the minimal value-updates required
to produce the user-desired output. Also, the event-driven backend asynchronously
updates an input value when its value is required. In this way, we can greatly re-
duce the number of updates.

Keywords: Functional Reactive Programming; Embedded Domain-Specific Lan-
guage; Embedded Systems; Haskell

1 Introduction
A reactive system responds to external inputs in a timely manner. Robots that pro-
duce real-time motor commands according to continuously-changing environments and
GUI systems whose contents change asynchronously with user inputs are two typical
examples of reactive systems. In traditional sequential programming languages, we
frequently use polling and/or event-driven callbacks to implement such systems. Un-
fortunately, these methods are complex and error-prone [3]. From the point of view of
modularity, polling loops are not composable, and callbacks make control logic scat-
tered across multiple pieces. What’s worse, since the arrival of input events is unpre-
dictable, programmers need to manage updates of mutable states carefully to preserve
dependencies among variables.

Functional Reactive Programming (FRP) is a programming paradigm originated
from dataflow languages. FRP introduces time-varying values (aka signals) to repre-
sent values that (continuously or discretely) change over time. Time-varying values
can be composed and transformed as if they were plain values. By applying functional
∗To appear in Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Com-

puting, Studies in Computational Intelligence, Springer, 2019.
†kikyouer@gmail.com
‡takuo@acm.org

1

mailto:kikyouer@gmail.com
mailto:takuo@acm.org

primitives such as map, reduce and filter on time-varying values, programmers
can model the time-dependent relationships declaratively.

While FRP has been successfully applied in many areas such as computer anima-
tion and music composing, its usage on embedded systems is still limited. CFRP [14],
Emfrp [13] and Juniper [9] tried to fill the gap by generating code with a small mem-
ory footprint. However, inefficiency still persists. These languages repetitively sample
every input value and propagates update iteratively even if some input values do not
contribute to the computation according to data dependencies. The unnecessary fre-
quent activation of input sensors will significantly increase the battery consumption of
the device.

The objective of our research is to propose an efficient FRP language for resource-
constrained embedded systems. The runtime should be aware of unnecessary updates
and automatically removes them from update iterations. We also aim to provide a
language that is familiar to Haskell users and is easily extendable.

We present Hae, a code-generating embedded domain-specific language (EDSL)
in Haskell. Instead of developing a standalone DSL, we use the technique called deep
embedding [8]. A deeply embedded DSL overloads the host language’s constructs and
use them as combinators to construct the abstract syntax. Hae’s user programs are
written in Haskell source files and preprocessed by Haskell compiler. This process
allows users to not only reuse all developing tools of Haskell but also utilize Haskell as
a macro system for metaprogramming.

The FRP construct of Hae is different from that of languages such as CFRP or
Emfrp. Time-varying values changes at discrete points of time rather than continuously.
Combined with a mechanism to let users designate the update interval of values, we
make it possible to derive the minimal value-updates required to produce the user-
desired output. A Hae program is transformed to C++ code to be integrated with Hae’s
event-driven backend that asynchronously updates input values when they are required.
In this way, we can greatly reduce the number of updates.

The rest of the paper is organized as follows. Section 2 briefly describes Hae us-
ing an example. Then, the execution model of the language with its optimization is
discussed in Section 3. Section 4 describes the implementation of the language and
Section 5 presents the evaluation result. Section 6 overviews related work and Sec-
tion 7 concludes the paper.

2 Language Hae

2.1 Overview
Hae1 is an embedded domain-specific language (EDSL) in Haskell that generate C++
code to be integrated with different embedded developing tools. Hae provides users
with essential FRP primitives and combinators to compose a static signal graph. A
signal graph is a directed acyclic graph whose nodes and edges are time-varying values
and their dependencies. Hae compiler translates the signal graph to C++ representation,
which users can link against different event-driven backends such as Mbed OS2. Hae
also provides meta-level libraries such as a static Vector library upon basic language
elements. The data structure provided by these libraries exist only at compile-time.

1https://github.com/psg-titech/hae
2https://www.mbed.com/en/platform/mbed-os/

2

https://github.com/psg-titech/hae
https://www.mbed.com/en/platform/mbed-os/

import Hae.Expr
import Hae.Num
import Hae.Bool
import Hae.Compiler

tmp :: E Double -- temperature sensor input
tmp = input "tmp" (EveryS 1)

hum :: E Double -- humidity sensor input
hum = input "hum" (EveryS 1)

di :: E Double -- discomfort index
di = 0.81 * tmp + 0.01 * hum * (0.99 * tmp - 14.3) + 46.3

fan :: E Bool
fan = di .>= 75.0

main = putStrLn $ compile [OutputDef "fan" fan]

Listing 1: A simple fan controller in Hae

tmp di

hum

fan

class Out_fan{
 void process() {
 // control fan
 // ...
 }
};

class In_tmp{
 value process() {
 // read sensor
 // ...
 }
};

class In_hum{
 value process() {
 // read sensor
 // ...
 }
};

Hae Runtime

Figure 1: Fan controller after compilation

A simple implementation of a fan controller in Hae is shown in Listing 1. We
declare two input signals tmp and hum of type Double to represent the readings of
temperature and humidity sensors respectively. The discomfort index3 is computed
from the current temperature and humidity. If the value is larger than 75.0, the value of
signal fan will be True. This means that the fan is turned on while the air environ-
ment is uncomfortable. Users need to fill in I/O code in C++ for input (tmp and hum)
and output (fan) nodes. After compilation, signals will be transformed to nodes in
Hae’s C++ runtime, as depicted in Figure 1. As we can see, Hae is a purely functional
language where side effects can only happen within I/O nodes.

2.2 Deep Embedding
We claim that the code-generating EDSL in Haskell fits with FRP on resource-constrained
systems very well in the following viewpoints:

3A kind of human stress indicators. It is empirically known that 50% of people feel uncomfortable if it
reaches 75.

3

• It enables us to reuse Haskell’s modules system, type-checker, debugger and
other tools, enjoying not only the ease of implementation but also a familiar
development environment.

• We can implement functional language features such as higher-order functions
and currying effortlessly. The host language will expand usages of these features
at Hae’s compile-time so that there is no runtime penalty.

• By embedding our language in Haskell, we automatically obtain a powerful and
hygienic macro system. It is extremely useful for resource-constrained systems.
For example, the Vector library built upon the macro system is able to fuse
producer and consumer functions and eliminate all intermediate results. Such
libraries are also easy to use as we can distinguish them from plain functions by
their type signatures. This is further discussed in Section 2.5.

2.3 Discrete Signals
FRP with everchanging continuous signals is easy to understand and elegant: program-
mers assume that the system runs infinitely fast, and the precision depends merely on
iteration interval chosen by the runtime. This may be the best for computer animation
that FRP is originally designed for. But when it comes to resource-constrained hard-
ware, we have to take efficiency into serious consideration. Iteration that is too fast
causes high power consumption, and slow iteration makes the system unresponsive.
As the continuous semantic forces the whole system to iterate at the same speed, it is
difficult to choose a proper rate.

Event-driven discrete signals allow finer control over the updating process. Differ-
ent signals can update asynchronously. We leveraged this feature of discrete FRP and
designed a mechanism to perform updates only when they are needed. The mechanism
is one of the main contributions of our work and is discussed in detail in Section 3.3.

Another advantage of discrete signals is that it is easier to incorporate asynchronous
computation. If some computation is slow and we do not need the latest result of it, we
can disconnect it from the main signal graph and use asynchronous signals to connect
the input and output of that computation back to the system.

2.4 Signal Definitions
Embedded in Haskell, Hae shares the basic syntax and type system with its host lan-
guage. As a result, Hae inherits the type definition, function definition and expressions
like let-binding directly from Haskell. In this and next subsections, we will introduce
how signals and other reactive primitives fit with Haskell.

We use type constructor E to denote a signal. The code snippet in Listing 2 shows
definitions of a constant signal, an input signal, and a Boolean signal whose value is
obtained by basic arithmetic operations.

As we can see, all literals are automatically lifted to constant signals. Currently,
Hae has four primitive types: Int, Float, Double, and Bool. They can be com-
piled to their C++ counterparts. Higher-order signal (signal of signals) is not allowed
for the sake of static construction of signal graphs.

The definition of input signal x is straightforward using function input. The first
string parameter is used for Hae compiler to generate a function stub of the same name.

4

a :: E Double
a = 0.5

x :: E Int
x = input "x" (EveryMs 10)

y :: E Bool
y = (3 * x + 1) .> 5

Listing 2: Example definitions of signals

compile :: [OutputDef] -> String

-- to print out the translated string
main = putStrLn $ compile [OutputDef "out1" out1, ...]

Listing 3: Designating output signals

Finally, to complete a Hae program, we need to tell the compiler which output
nodes we want to compile. As shown in Listing 3, function compile translates a list
of output nodes to C++ code as a string.

2.5 Functions
Functions in Hae are categorized into two types. One has type E α1→ E α2→ ··· →
Eαm and the other has type E (α1→α2→·· ·→αn) where types αi do not contain type
constructor E. The first type is essentially a Haskell function that any application of it
will be inline-expanded. It also supports currying and higher-order functions. Besides
inlined functions, it can also be used as a metaprogramming tool.

The second type of function actually exists at runtime as a node in the signal graph.
It is better to use this kind of function if it will be called many times to reduce memory
usage. The code in Listing 4 shows examples of usage and conversion from the first to
the second type of functions.

computeDi :: E Double -> E Double -> E Double
computeDi t h = t - 0.55 * (1 - 0.01 * h) * (t - 14.5)

di = computeDi tmp hum

curriedDi :: E Double -> E Double
curriedDi = computeDi tmp

computeDi’ :: E (Double -> Double -> Double)
computeDi’ = lift2 computeDi

-- operator |$| is required to apply a lifted function
di’ = computeDi’ |$| (tmp, hum)

Listing 4: Two types of functions

5

data Vector a = Indexed { length :: Int, index :: Int -> a }
type EVector a = Vector (E a)

map :: (a -> b) -> Vector a -> Vector b
map f (Indexed l ixf) = Indexed l (f . ixf)

take :: Int -> Vector a -> Vector a
take n (Indexed l ixf) = Indexed (min n l) ixf

drop :: Int -> Vector a -> Vector a
drop n (Indexed l ixf) =

Indexed (max 0 (l - n)) (\x -> ixf (x + n))

(...) :: Int -> Int -> EVector Int
(...) m n = Indexed (n - m + 1) (+ m)

Listing 5: Definition of Vector library

The second type of function can be obtained by lifting a function of the first type.
Users of existing FRP languages may have noticed that the type signature of our lift
function is different from that of other languages. For example, lift2 in the code
snippet has type

lift2 :: (E a→ E b→ E c)→ E(a→ b→ c)

while its counterpart in CFRP would be typed as

lift2 :: (a→ b→ c)→ (E a→ E b→ E c).

The difference comes from the fact that Hae is an embedded language. Primitive data
types (a, b and c) and functions (in the form of a→ b) of the host language cannot be
directly reified without wrapping. Having to write E everywhere may seem tiresome,
but it also gives a clear distinction between elements in Haskell and our DSL.

2.6 Datatype and the Vector Library
One limitation of deeply embedded DSL is that users cannot customize datatypes of
the DSL without modifying the interpreter (compiler). A well-known technique to deal
with this issue is to construct a small core language consisting of essential datatypes
and build meta-level libraries of datatypes upon it using the host language Haskell. The
design of Hae language takes the same approach. Here we briefly introduce how such
a library can be built to show the expressiveness of Hae language.

Hae comes with a simplified version of Vector library in Feldspar [2]. A vector is
like an indexed array except that it does not exist in memory at runtime. The definition
of the vector type is shown in Listing 5. Data constructor Vector takes the length
and the index function (function mapping an index to corresponding value stored in the
vector) as parameters. The map function simply composes the provided function with
the vector’s index function. Other functions work similarly.

As we have discussed in Section 2.5, Haskell functions will be automatically inline-
expanded. The producer function and consumer function of a vector will be fused
together so that there will be no vectors of intermediate results.

6

a b

gcd(a, b)

signal x signal y

signal z = f x y

Figure 2: Dependency

a b

b

signal x signal y

signal z = sample x y

Figure 3: Sampling

Vector provides an efficient implementation of static-sized array in Hae. Other
static container types can be easily built using the same method.

3 Execution Model

3.1 Updates on Signal Graph
The execution model of Hae is similar to that of Emfrp [13]. Signals and their depen-
dencies form a directed acyclic graph. There are two ways to propagate updates on
such a graph. They can be “pushed” from input nodes or “pulled” by output nodes.
Pull-based FRP computes backward through the signal graph whenever results are de-
manded. As it is demand-driven, it eliminates unnecessary computation or polling on
inputs. However, pull-based implementation requires lazy evaluation which limits its
usage on resource-constrained systems.

Hae uses a push-based runtime. Comparing to pull-based FRP, it causes less la-
tency between occurrence of an event and the reaction to it [6]. Updates are pushed
following the order which is given by the topology sorting of the graph, from source
nodes representing input signals to sink nodes representing output signals.

An important difference from Emfrp is that all input signals are not required to be
updated in the same update iteration. In Hae, every signal contains information about
its updating interval. Asynchronously, some signals update at a faster rate than others.
In the iteration where fast signals update, slow signals do not need to activate. The
runtime will push their previous value to its descendants. As a result, we no longer
need to update the whole system whenever we get a new input.

We give users the ability to explicitly control the updating interval. When declaring
input signals, users can specify update intervals of them. The update intervals of other
signals that depend on the input signals can be calculated from them. For example, if
signal x updates every 150ms and signal y updates every 200ms, then any signals that
depend on these two signals will update every 50ms (calculated by taking the GCD
of the two), as shown in Figure 2. We can also construct a new signal by sampling
on another signals when its value changes. For example, in the case of x and y, the
updating interval of sample x y is 200ms, as shown in Figure 3.

3.2 Stateful Computation
Hae provides two kinds of stateful computation. The first one is to refer to the pre-
vious value of a signal. This is implemented by inserting a delay node into the
signal graph. The node will delay one event occurrence of a signal. If a signal emits

7

b c

cb

[b, c]x

tick1 tick2

y = sample x tick1 z = sample x tick2

[b, c] ...

Figure 4: Calculation of actual update interval

[0,1,2,3...], the delayed signal will yield [0,0,1,2...] in the correspond-
ing update iteration.

The @last modifier in Emfrp serves a similar purpose of referring to previous
values. But their semantics are different. Emfrp adopts the continuous signal model,
@last in Emfrp refers to the value at the snapshot taken a moment ago (implemented
as values in the last update cycle). Thus a@last and b@last are guaranteed to rep-
resent values taken in the same update cycle. In contrast, delay a and delay b in
Hae do not necessarily represent values of the same time as updates are asynchronous.

Another kind of stateful computation is foldp. It behaves like the fold function
in functional languages, but instead of accumulating list elements, it accumulates the
history of values of a signal. foldp should be used with care since it cannot be
optimized using the algorithm below.

3.3 Optimizing Push Timings
It is obvious that when we sample a fast-updating signal on a slower signal, all pre-
ceding signals of the sampled signal only need to update at the slower rate. Using this
idea, we can calculate the actual update interval (which should be slower) by working
from output signals backward the signal graph.

Consider the signal graph in Figure 4. For signal y and z to update at interval b
and c, signal x that provides value to them should update at both the intervals. Thus
the actual update interval of signal x should be a list, containing those two update
intervals. We apply the same method down the dependency graph and build the list of
update intervals until reaching input signals.

Things become more complicated when stateful computations are introduced. If
foldp is used, every previous value of preceding signals will contribute to the final
accumulated value. In this case we cannot optimize the update interval.

For stateful computation consisting of delay nodes, we need to offset the up-
date timing. Let us extend the denotation of update intervals to offsetted timing using
interval(offset). For example, offsetted timing 60ms(-1ms) means that the
signal’s value will be required at 59ms, 119ms,... With this extension, the actual re-

8

quired timing of a signal actual(x) can be computed by the following rules:

• Let dep(x) be signals that depend on x, int(x) be the user-designated update
interval of x.

• If x is an output signal, actual(x) = [int(x)].

• If x is a delayed signal, for each signal s in dep(x), offset each timing in
actual(s) by -int(x) and concatenate them together. For example, if
int(x) = 1ms, dep(x) = [y, z], actual(y) = [15ms, 20ms]
and actual(z) = [50ms(-1ms)], then after offsetting and concatenating,
actual(x) = [15ms(-1ms), 20ms(-1ms), 50ms(-2ms).

• If x is not delayed, we can just concatenate the timings without offsetting them.

4 Implementation
Hae is a code-generating embedded domain specific language. We will show the details
of our prototype implementation in this chapter. The construction of a domain specific
language within Haskell is explained in Section 4.1. Implementation of the C++ run-
time is shown in Section 4.2. Finally, we introduce Hae’s compiler in Section 4.3 with
emphasis on a new optimization technique.

4.1 EDSL Frontend
The core expression of Hae revolves around type OpenExpr. Type E a, which repre-
sents a signal of type a, is just a synonym of type forall f. (Ref (OpenExpr
f a)). Before explaining the wrapper type Ref, let us first show the definition of
OpenExpr in Listing 6. Some typical constructors of OpenExpr are also introduced
below.

OpenExpr is the basic building block of parametric higher-order abstract syn-
tax [4]. The first type parameter f is used to capture the type of shared expressions
in LetRec bindings using the technique introduced by Oliveira et al. [12] This tech-
nique ensures the type safety of the LetRec binder by statically encoding the types
of binded expressions in typed lists. The Haskell compiler will then be able to reject
illegal LetRec expressions.

Type constraint HType t => on the Inp and Lit constructors ensures that we
can only define input signals and constant signals of primitive types in Hae (Int,
Double, Float and Bool).

Predefined primitive functions are reified by PrimOp constructor. By making
OE an instance of Num type class, we can let Haskell implicitly insert correspond-
ing PrimOp constructors when users write literal values and arithmetic operations.
As a result, programming with signals feels no different than programming with plain
values.

For user-defined functions that exist at run time (the second kind of function in-
troduced in Section 2.5), we use Lam, Var and App constructors to reify them. Lam
records the original unlisted function to be given a unique name when compiled. Var
serves as a dummy argument to capture argument binding of that function. The appli-
cation of these functions are represented by using App.

Finally, we have individual constructors for FRP primitives SampleOnChange,
Delay and Foldp to distinct them from other expressions.

9

type E a = forall f. OE f a
newtype OE f a = OE (Ref (OpenExpr f a))

data OpenExpr (f :: * -> *) t where
Inp :: HType t => String -> TimingDef -> OpenExpr f t
Lit :: HType t => t -> OpenExpr f t
PrimOp :: (Typeable a, Typeable b) =>

PrimOpId -> (a -> b) -> OpenExpr f (a -> b)
IfThenElse :: (Typeable t) => OE f Bool -> OE f t -> OE f t -> OpenExpr f

t

Var :: f t -> OpenExpr f t
Lam :: (Typeable a, Typeable b) => (f a -> OE f b) -> OpenExpr f (a -> b)
App :: (Typeable a) => OE f (a -> b) -> OE f a -> OpenExpr f b
LetRec
:: (CList ts, Typeable t)
=> (TList f ts -> TList (OE f) ts)
-> (TList f ts -> OE f t)
-> OpenExpr f t

SampleOnChange :: Typeable a => OE f a -> OE f b -> OpenExpr f a
Delay :: Typeable t => OE f t -> OpenExpr f t
Foldp :: (Typeable a, Typeable b) => OE f (a -> b) -> OpenExpr f (a -> b)

Listing 6: Definition of core expression OpenExpr

data Ref a = Ref { refId :: Unique, deref :: a }

instance Eq (Ref a) where
Ref x _ == Ref y _ = x == y

Listing 7: Definition of Ref

Careful readers may notice that we use type OE rather then OpenExpr in the recur-
sive constructors. OE wraps OpenExpr with Ref, a data type that enables observable
sharing [5] in a purely functional language.

Observable sharing is essential for an embedded domain specific language. Without
observable sharing, our compiler cannot discover links among multiple references of
a same value. As a result, for example, in expression C*D*(D*D+D*E), D will be
computed four times.

The definition of Ref is shown in Listing 7. It tags our value with a Unique
identifier. Ref adds one level of indirection to raw values so that we can rediscover the
sharing when analyzing these wrapped values by comparing their refId.

In Hae, users use smart constructors which wraps Ref automatically. For example,
the smart constructor of Delay is defined as:

delay :: OE f a -> OE f a
delay = OE . ref . Delay

where ref is the function responsible to generate a unique refId. For simplicity,
Hae implements ref function using unsafePerformIO in Haskell, as shown in
Listing 8.

10

import Data.Unique (newUnique)

ref :: a -> Ref a
ref x = unsafePerformIO $ do

u <- newUnique
return (Ref u x)

Listing 8: Implementation of ref

4.2 Runtime
Hae uses a modified version of CFRP’s event-driven runtime [14]. They share the same
queue-based iteration logic within an update iteration:

1. During each update iteration, a node maintains the number of events it expects
to receive.

2. When beginning an update iteration, input nodes are pushed to the update queue.

3. For each node n in the update queue, repeat the process until the queue is empty:

(a) n.process() is called to generate an update event. The actual compu-
tation of the node is done here

(b) The update event is sent to all of its children

(c) If a children has received enough events, it will be added to the update
queue

(d) Finally, n is removed from the update queue

In CFRP, this update iteration is repeatedly executed in an infinite loop. To adapt it
to our asynchronous execution model, we enhance input nodes with structure Timing
(Listing 9). Every input node now contains the information of multiple timings. The
runtime engine only initiates an update iteration at these timings. In the update iter-
ation, input nodes which are not the initiators of the update will remain deactivated,
sending empty update events to its children. After an update iteration is finished, the
runtime engine schedules the next activation of these input nodes.

struct Timing {
ttime period; // 64 bit int, the actual update interval
std::vector<ttime> offsets;
Timing(...) {...} // constructor

};

Listing 9: The data structure Timing

Note that delay is also a new type of node in Hae. Its implementation is straight-
forward. When a delay node is activated, it saves its newly received value to member
variable prev to be used as next iteration’s output.

11

-

*

0.55 *

- -

*

t

h

14.5

0.01

1

t h

λ t h→
t ­ 0.55*(1 ­ 0.01*h)*(t ­ 14.5)

Figure 5: A simple example of node merging

4.3 Compiler and Optimization
The compiling process of an EDSL in Haskell is slightly different from that of a stan-
dalone functional language. There is no need for lexing, parsing, α-conversion and
even K-normalization as the host language automatically expands let bindings before
constructing the DSL’s abstract syntax.

We can also let Haskell do type inference for us by using Data.Typeable in
Haskell’s basic libraries. The Typeable class associates type representations to
types. By deriving OpenExpr as an instance of Typeable. We can retrieve the
type representation of any DSL expression using

typeOf :: forall a.Typeable a⇒ a→ TypeRep.

Since Hae generates C++ code, we can let C++ compilers handle most of the op-
timizations. However, there is still one essential optimization to do: merging adjacent
primitive operations into a single node. Without merging, every arithmetic operation
becomes an individual node at runtime, which is unacceptable considering time and
space overhead.

Figure 5 demonstrates node merging on the computation of comfort index. Nodes
of primitive functions and constants are merged into a single node that takes its input
from two nodes.

A more general case is shown in Figure 6. A white node denote a primitive or
constant node. Other nodes that cannot be merged are marked black. Our node-merging
algorithm partitions white nodes into 3 clusters. Each cluster contains exactly one
output node which is marked gray. The output node must be the sink node within the
partition. Finally, nodes in each partition are merged together, forming a simplified
signal graph.

The key problem here is how to find the partition. Globally we maintain a map
from node to cluster to record the membership of every white node. At the beginning,
the map is empty. Then, for each output node, we traverse backward the dependency
graph until a white node x that belongs to no cluster is found. This is the gray node of
a new cluster. Then we start the subprocess below:

1. Mark node x gray.

2. Use node x as the source node for a new round of DFS. Note that we search only
white nodes in this round of DFS.

12

n

x

y

n

x

y

A

B

C

x y

n

A

B

C

m m

m

Figure 6: A more general case of node merging

3. During the DFS, set white nodes that previously belongs to no cluster as a mem-
ber of cluster x. However, if we encountered a white node n that is already a
member of another partition, it means cluster x depends on the value of n while
n is not an output node. This is not allowed. In this case, we recursively start a
new subprocess with x = n, effectively making a new partition from n.

The algorithm stops when every white node belongs to a partition.
In Emfrp, the partition of primitive nodes is explicitly defined by the user using

keyword node. Hae makes this process automatic and optimal. Users can write ex-
pressions in whatever way they want without worrying about the overhead of additional
intermediate nodes.

5 Evaluation
In this section, we evaluate the primary objective of our research — execution effi-
ciency by two metrics. One is the number of times input sensors are activated. The
other is the total number of node updates. Both measured in a fixed period of time.
We run a test program using both Hae’s asynchronous runtime and traditional repeti-
tive iteration and compare the results of the two metrics. For evaluation purpose, we
have built a simple repetitive execution engine upon Hae’s asynchronous runtime (List-
ing 10).

void callback_(ttime now) {
now_ = now;
iterate_(); // the actual update iteration
// call me after ITERATE_INTERVAL
impl_set_cb_(now, ITERATE_INTERVAL);
impl_yield_();

}

Listing 10: Repetitive execution

The test program (Listing 11) is a fan controller that switches on and off every
minute depending on the sensor readings of temperature and humidity sensor. We

13

tmp :: E Double
tmp = input "tmp" (EveryMs 100)
hum :: E Double
hum = input "hum" (EveryMs 1000)

avg3 :: E a -> E a
avg3 s = (s + prevS + delay prevS) / 3
where
prevS = delay s

tmpAvg = avg3 tmp

computeDi :: E Double -> E Double -> E Double
computeDi t h =
0.81 * t + 0.01 * h * (0.99 * t - 14.3) + 46.3

di =
sampleOnChange (compute_di tmpAvg hum) (fps (EveryS 5))

diAvg = avg3 di

fan :: E Bool
fan =
sampleOnChange diAvg (fps (EveryMin 1)) .>= threshold
where
threshold = 75.0

main = putStrLn $ compile [OutputDef "fan" fan]

Listing 11: The test program in Hae

set the sampling interval of the temperature sensor tmp to 100ms and the humidity
sensor hum to 1000ms. These values provide a baseline for computation of actual
update timings. avg3 is a helper function that utilizes Hae’s discrete-time semantic to
compute the average of the latest three values of a signal. We use it to smooth readings
of tmp sensor. The discomfort index di is sampled every 5 seconds using built-in
signal generator fps. Then, we take the average of discomfort index and use it to
determine the switch of the fan once per minute.

Listing 12 shows the two input nodes after compilation using GHC 8.0.2. We
can see that tmp contains 9 timings and hum have 3. During an update iteration,
the runtime has to remember which node has initiated this iteration and also when to
schedule the next round. Thankfully, the memory usage is linear to the total number of
update timings.

We used a Linux-based backend to simulate running the test program for 60 min-
utes. The code generated by Hae and the backend are compiled by GCC 8.1. We ran
the simulation on our PC running Fedora 28 on Intel’s Core i7-6700K 4.0GHz with
16 gigabytes of RAM. The backend records the number of times of input node activa-
tions and node updates (by counting how many times a node’s process() method is
called). The repetitive reference runtime iterates at the rate of 100ms (the same as the
update interval of input signal tmp). Results are shown in Table 1. Both metrics are
reduced by orders of magnitudes.

14

// ...
In_tmp n33;
n33.add_timing(hae::Timing(60000, 0, 0));
hae::ttime t33_1[8] = {-10200, -10100, -10000,

-5200, -5100, -5000, -200, -100};
n33.add_timing(hae::Timing(60000, 8, t33_1));
engine.register_input_node(&n33);
// ...
In_hum n47;
n47.add_timing(hae::Timing(60000, 0, 0));
hae::ttime t47_1[2] = {-10000, -5000};
n47.add_timing(hae::Timing(60000, 2, t47_1));
engine.register_input_node(&n47);
// ...

Listing 12: Input nodes after compilation

Table 1: Comparison of efficiency (in number of times)
Iterations Input Activations Node Updates

Repetitive 36000 72000 648000
Async Exec 540 722 4509

For Hae’s asynchronous runtime, increasing the final sampling of fan from 60s to
120s will result in both the number of times of input activations and node updates in
Hae’s runtime being in half. Increasing the update interval of tmp or hum causes no
change to the result because the number of timings in the test program is determined
by the sample node. In contrast, for the repetitive runtime, making the final sampling
slower makes no difference. But increasing the update interval of input signals effec-
tively means we can iterate at a slower rate, resulting in fewer updates. To summary up,
compared to traditional languages, Hae’s runtime perform better when output signals
operate slower and when input sensors run at a faster rate.

6 Related Work

6.1 FRP Languages for Small-scale Systems
Flask [11] is a continuous FRP language targeting sensor networks. The two-stage
language design separates the meta-language describing sensor network structure and
the node-level language that compiles to NesC, a C-like language for sensor nodes.
The runtime deploys node-level code to each sensors and constructs the network. Na-
tive NesC code can be embedded in Flask by using Haskell’s quasiquotation language
extension.

Emfrp [13] achieved static memory footprint as a purely functional reactive lan-
guage. An Emfrp program can be directly mapped to a static directed graph, elim-
inating recursion and any dynamic allocation of memory. Signals (called Nodes) in
Emfrp are not first-class citizens. To reference a node one must supply with the name
of it. The graph-like program is then transformed to C/C++ codes of the target platform
with stub I/O functions for input and output nodes. Programmers fill in these stubs to

15

connect the reactive part to other parts of the system.
Juniper [9] is a ML-like FRP language targeting the Arduino platform. Unlike Em-

frp which limits the language’s expressive power, Juniper is equipped with advanced
language features such as anonymous functions and parametric polymorphism. The
signal graph is dynamic in Juniper, allowing use of higher-order signals. Juniper is not
a purely functional language.

6.2 Code-Generating Embedded DSL
There are two flavors of domain-specific language. A DSL can be either first-class,
with its own compiler or interpreter, or embedded in a host language. The embedded
approach has advantages in that it can utilize the host language’s syntax and ecosystem.

Haskell is a functional language with powerful type system and overloading ca-
pabilities. Previous research has explored Haskell’s ability to not only run DSLs in
its own runtime, but also generate code that can be interpreted by external programs.
Code-generating embedded DSL leverages both the syntactic convenience of the host
language and the flexibility of a customized runtime.

Elliott et al. demonstrated techniques to capture and reify variable bindings in
Haskell in their image-processing language Pan [7]. Value sharing and recursion in
EDSLs is made possible by using I/O based observable sharing [5] or parametric
higher-order abstract syntax [4]. Some languages, such as [1, 2, 10], are built upon
these techniques to generate all kinds of codes from CUDA, DSP algorithms to even
Haskell code itself.

7 Conclusion
We have designed and implemented Hae, a functional reactive programming language
targeting small-scale embedded systems. Hae showed that we can rule out unnecessary
updates by combining the discrete-time semantic and explicit update intervals. This
makes Hae much more efficient than previous FRP languages for embedded devices.

The design choice of a code-generating embedded domain specific language let
us take advantage of a familiar developing environment, a powerful macro platform,
flexible choice of backends and ease of implementation. The algorithm we used for
merging primitive nodes is not only essential for embedded DSLs but also useful for
standalone FRP languages.

Hae is currently a prototype language that requires polishing. Some designs may
not be the best choice for embedded development. More case studies about FRP and
embedded programming need to be done, especially those that may benefit from meta-
programming. The survey will not only inspire new ideas but also provide better ways
to evaluate our work.

As for language features, the ability to change update intervals at runtime can be
an interesting research direction. While this will require more information about signal
nodes to be maintained at runtime, the flexibility it brings should outweigh the cost.

Acknowledgments
This work is supported in part by JSPS KAKENHI Grant No. 18K11236.

16

References
[1] Ankner, J., Svenningsson, J.: An EDSL approach to high performance Haskell

programming. In: ACM SIGPLAN Symposium on Haskell (Haksell 2013), pp.
1–12. ACM (2013). doi:10.1145/2503778.2503789

[2] Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson,
A.: The design and implementation of Feldspar: An embedded language for dig-
ital signal processing. In: IFL 2010: Implementation and Application of Func-
tional Languages, Lecture Notes in Computer Science, vol. 6647, pp. 121–136.
Springer (2010). doi:10.1007/978-3-642-24276-2 8

[3] Bainomugisha, E., Carreton, A.L., Van Cutsem, T., Mostinckx, S., De Meuter,
W.: A survey on reactive programming. ACM Computing Surveys 45(4), 52:1–
52:34 (2013). doi:10.1145/2501654.2501666

[4] Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: 13th ACM SIGPLAN International Conference on Functional Programming
(ICFP 2008), pp. 143–156. ACM (2008). doi:10.1145/1411204.1411226

[5] Claessen, K., Sands, D.: Observable sharing for functional circuit description.
In: Advances in Computing Science (ASIAN ’99), Lecture Notes in Computer
Science, vol. 1742, pp. 62–73. Springer (1999). doi:10.1007/3-540-46674-6 7

[6] Elliott, C.: Push-pull functional reactive programming. In: Proceedings of the
2nd ACM SIGPLAN Symposium on Haskell (Haskell 2009), pp. 25–36. ACM
(2009). doi:10.1145/1596638.1596643

[7] Elliott, C., Finne, S., de Moor, O.: Compiling embedded lan-
guages. Journal of Functional Programming 13(3), 455–481 (2003).
doi:10.1017/S0956796802004574

[8] Gill, A.: Domain-specific languages and code synthesis using Haskell. ACM
Queue 12(4) (2014). doi:10.1145/2611429.2617811

[9] Helbling, C., Guyer, S.Z.: Juniper: A functional reactive programming lan-
guage for the Arduino. In: 4th International Workshop on Functional
Art, Music, Modelling, and Design (FARM 2016), pp. 8–16. ACM (2016).
doi:10.1145/2975980.2975982

[10] Mainland, G., Morrisett, G.: Nikola: Embedding compiled GPU functions in
Haskell. In: 3rd ACM Symposium on Haskell (Haskell 2010), pp. 67–78. ACM
(2010). doi:10.1145/1863523.1863533

[11] Mainland, G., Morrisett, G., Welsh, M.: Flask: Staged functional program-
ming for sensor networks. In: 13th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP 2008), pp. 335–346. ACM (2008).
doi:10.1145/1411204.1411251

[12] Oliveira, B.C.d.S., Löh, A.: Abstract syntax graphs for domain specific lan-
guages. In: Workshop on Partial Evaluation and Program Manipulation (PEPM
2013), pp. 87–96. ACM SIGPLAN, ACM (2013). doi:10.1145/2426890.2426909

17

https://doi.org/10.1145/2503778.2503789
https://doi.org/10.1007/978-3-642-24276-2_8
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1007/3-540-46674-6_7
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1017/S0956796802004574
https://doi.org/10.1145/2611429.2617811
https://doi.org/10.1145/2975980.2975982
https://doi.org/10.1145/1863523.1863533
https://doi.org/10.1145/1411204.1411251
https://doi.org/10.1145/2426890.2426909

[13] Sawada, K., Watanabe, T.: Emfrp: A functional reactive programming language
for small-scale embedded systems. In: MODULARITY Companion 2016: Com-
panion Proceedings of the 15th International Conference on Modularity, pp. 36–
44. ACM (2016). doi:10.1145/2892664.2892670

[14] Suzuki, K., Nagayama, K., Sawada, K., Watanabe, T.: CFRP: A functional reac-
tive programming language for small-scale embedded systems. In: Theory and
Practice of Computation (Proc. WCTP 2016), pp. 1–13. World Scientific (2017).
doi:10.1142/9789813234079 0001

18

https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1142/9789813234079_0001

	Introduction
	Language Hae
	Overview
	Deep Embedding
	Discrete Signals
	Signal Definitions
	Functions
	Datatype and the Vector Library

	Execution Model
	Updates on Signal Graph
	Stateful Computation
	Optimizing Push Timings

	Implementation
	EDSL Frontend
	Runtime
	Compiler and Optimization

	Evaluation
	Related Work
	FRP Languages for Small-scale Systems
	Code-Generating Embedded DSL

	Conclusion

