An Actor-Based
Runtime Monitoring System
for Web and Desktop Applications

Paul Lavery” & Takuo Watanabe

Department of Computer Science, Tokyo Institute of Technology
("Currently with ContentSquare)

Jun. 27, 2017
IEEE/ACIS SNPD 2017, Kanazawa, Japan

About This Talk

® |ntroduces a library-based approach to runtime-
monitoring for actor-based systems
® Two case studies to evaluate the proposal

e Talk outline
- Runtime Verification/Monitoring
- Motivation: GPL/Library-based Approach
- Monitoring Module for Scala/Akka
- Case Study
- Conclusion

Runtime Monitoring/Verification

® "A computing system analysis and execution approach
based on extracting information from a running system
and using it to detect and possibly react to observed

behaviors satisfying or violating certain properties"
® From http://fsl.cs.illinois.edu/index.php/Runtime_ Verification

e A kind of 'light-weight' formal methods
- Bridging the gap of (static) verification and testing
® RM/RV can deal only with finite execution traces

- Properties are usually specified in a formal notation/DSL
® ex. RE, Buchi Automata, LTL, PT-LTL, PT-DTL

http://fsl.cs.illinois.edu/index.php/Runtime_Verification

PT-LTL

® Past-Time Linear Temporal LogicC [Manna et al '92]
e Formula
F .:=true|false |p | " F|FANF|FVF|F — F|
OF |oF|BF |FSF

- temporal operators: "previously", "sometime in the past’,
"always in the past", "since"

® Example [sen etal '04]

E((action A ©—action) — (—stop S start))

- "Whenever action starts to be true, it is the case that start
was true at some point in the past and since then stop was
never true"

PT-DTL

e Past-Time Distributed Temporal Logic [Sen et al '04]

F, == true | false | P(€) | =F; | F; A F; | F;V F; | F; — F; |
@Fi|®Fi|E|Fl’|FiSFl‘|@ij

g n=clvi| f(€)] @
£ = (&, &)

e |-formulae / i-expressions

- F;, & : formula / expression local to process p;
® Subscript indicates that they refers to the local names

® Epistemic formulae / expressions
- @;F;, @& : refers to the latest local knowledge of p; about p;

K. Sen, A. Vardhan, G. Agha and G. Rosu, "Efficient Decentralized
Monitoring of Safety in Distributed Systems", ICSE 2004.

Epistemic Formulae/Expressions

a b C d e
P4 ° ® ®
@, F>
f g h i J
P ® ® ® ®
2 F2
[m n 0
P3 ° o—eo
e Examples

- @)F>inp;atdequalsto Foinpyath
- @5 inp;atdequalsto & inpyath

6

Classification of RV/RM

® Property Specification
- General Purpose Languages vs. DSL/Formal Notations
e DSL: External or Embedded
- Imperative vs. Declarative
¢ |mperative : GPL, Automata
® Declarative: Temporal Logic
¢ Monitoring & Enforcement (Mitigation)

- Modified Runtime vs. Unmodified Runtime
e Modified : Kernel, VM, Language Runtime, Libraries
e Unmodified : Code Modification/Instrumentation, Reflection

- Synchronous vs. Asynchronous
- Centralized vs. Decentralized

Our Previous Works on RV/RM

® Runtime Security Monitor for JVM
- Property Specification
e DSL based on Buchi Automata [Watanabe et al, 2003]
- Enforcement Mechanism: Code Instrumentation
- Application to Secure E-Mail System [Shibayama et al, 2003]

e Runtime Monitoring of Information-Flow Properties
® Theoretical Foundation of Information-Flow Property
Monitoring [Nagatou et al, 2005]
® Application to Detecting Covert Channels [Nagatou et al, 2006]

Watanabe, Yamada, Nagatou, "Towards a Specification Scheme for Context-Aware Security Policies for Networked Appliances", IEEE STFES 2003.
Shibayama et al, "AnZenMail: A Secure and Certified E-mail System", Software Security: Theories and Systems, LNCS 2690, 2003.

Nagatou, Watanabe, "Execution Monitoring and Information Flow Properties", IEEE DSN 2005.

Nagatou, Watanabe, "Run Time Detection of Covert Channels", IEEE ARES 2006.

8

About this Work

e (Goal
- Provide an easier access to runtime monitoring by

presenting an easy-to-use, scalable monitoring framework
that provides developers with a way to dynamically verity
some important specifications and, in case they are
violated, with a mitigation mechanism

® Proposed Solution
- Target: Actor-based Applications written in Scala/Akka

- Property Specification: Scala
® Monitor/Worker/Listener Classes
® Checking code embedded in the target applications source

® Monitoring and Enforcement
e Scala library that receives monitoring information as

asynchronous messages

The Actor Model

® A concurrent computation model based on

asynchronous message passing
- Originally invented by

message

C. Hewitt in 1970s and

developed by G. Agha and

other researchers in 1980-90s.

- Basis of many languages:
Erlang, Scala (Akka), Pony, etc.

® A system is modeled as a collection of actors that

communicate with each other only via messages.
- "Shared Nothing": no shared states, no global clock
- No channels (mail address based)

- Dynamic Topology (mail addresses are 1st class)

10

Monitoring Modules

® The desired properties of an application are specified
as a collection of monitoring modules.

e At the runtime, modules check those properties and

executes some compensation (mitigation) tasks if they

are violated
- one monitor per property
- asynchronous monitoring (non-blocking)

® Modules are written as Akka actors

11

Monitoring Architecture (1)

e Master actor

- Checks whether the
specified property holds in
current system state by
executing the property
method.

- If it does not, sends the
arguments for mitigation to
the listener actor.

® | istener Actor
- Performs compensation
(mitigation) tasks

12

Monitoring Architecture (2)

[Application

f Monitor 1 \

e (Extended) Master Actors

- Creates a pool of workers

- Distributes the work to the
workers in a round robin
fashion through a router

- Receives the result message
from the workers and forwards
the content to the listener

e \Worker Actors

13

- Executes property method and
if the property does not hold
sends the arguments for
mitigation to the master actor

- Able to check properties in
parallel independently

How to Integrate Monitors

® Define Monitors/Workers/Listeners

- Monitors
® property: S => (Boolean, T)
- If false the property does not hold and mitigate is executed with T-typed

element as argument
- If true the property holds and nothing more is done

® mitigate: T => Unit
e Modify the Target Application Code

- Insert transmission sentences of Check messages to
application actors where the properties should be verified

14

Case Study (1): Blog Application

THE MVC APPLICATION !

JUST A TEST OF THE BLOG

ABOUT THE MODEL LAYER

e Blog application written using Play! framework

® Properties to be monitored
- No Spam Comments/Posts
- No Inactive Users

15

Simplified Blog Architecture

[

User]

1. Clicks on a post

A 4

A

3. Returns the post page with all comments

[Web application]
_ Without monitoring
2. Retrieves all comments
4
[Database]

16

Properties to be monitored

® No Spam Comments/Posts
- Repetition of same comments/posts should be deleted
- Short-term property checked asynchronously by a
monitoring actor in the same host of blog engine

® No Inactive Users
- Users who have not posted any blog articles for long time
(> 1 year) should be deleted
- Long-term property checked asynchronously by a
monitoring actor in a separate host

17

Checking "No Spam Comments" Property

(=]

A
1. Clicks on a post 3. Returns the post page with all comments
\ 4
N
Web application Monitor
) A. Initiates verification
A A
2. Retrieves all comments _ C. Deletes duplicates
B. Checks for duplicates
\ 4 \ 4 \ 4

[Database]

18

Monitor for "No Spam Comments”

 def checkPropertyComment(args: Unit): (Boolean, List[Int]) = {

2 val result =
Comment.mostRecent().groupBy(_.content).tolist.map(_._2.drop(1)).flatten.map
{ commentt => commentt.id.get.toInt }

3 if (!'result.isEmpty)

4 return (false, result)

5 else

6 return (true, List(0))
}

¢ def mitigationComment(res: List[Int]) = {

9 for (commentId <- res) Comment.delete(commentId)

0}

i1 val system = ActorSystem('"mySystem")

2 val monitorComment = new Monitor[Unit, List[Int]](system, "monitorComment",

checkPropertyComment, mitigationComment, 4)

19

Case Study (2): Shooting Game

= ® 2D side scrolling game in
the style of old arcade
| games like R-Type

® Spaceship shoots missiles
to destroy all the enemies
coming from the right of
! the screen
= e \Written using Scala Swing
GUI library

® Properties to be monitored
- No cheats!

20

Case Study (2): Shooting Game

® The application runs on top of usual JVM. So the
player can cheat by modifying game-state variables
(e.qg., by using JDI)

® The monitor checks that (a) the number of spaceship

lives and (b) the damage of shields are consistent with
game execution

21

Monitor for "Shield Consistency”

i def checkShieldProperty(args: Unit): (Boolean, Unit) = {
var result = false
if ('Item.itemsFound.filter(i => i._1.isInstanceDf [Shield]) .isEmpty) {
. var w = Item.itemsFound.filter(i => i._1.isInstance0f [Shield]) .last
result = w._2 > (System.nanoTime() -
(w._1.activeDuration+30)*30*scala.math.pow(10, 6)) }
6 return (result, Unit)
7}
s def shieldMitigation(arg: Unit): Unit = {
9 //Logeging
10 println("a cheat shield was being used")
1 //Active mitigation
Spaceship.shield = false
Spaceship.numberDfLives -= 1
i« }
val shieldMonitor = new Monitor[Unit, Unit] (system, "shieldMonitor",

checkShieldProperty, shieldMitigation)

22

Pros/Cons of
Proposed System

® Pros
- Simple, Easy to Use
® No need to learn dedicated DSL
or logical notations

e Can be integrated as a normal Scala library
- No JVM modification, No code transformation

- Can cover most of internal/distributed properties

e Cons

- NO correctness guarantee
® The monitoring module should be programmed to represent the
properties to be monitored

- No support for complex properties

23

Microbenchmarking

e Calculated over 1200 computations of factorials of all
numbers between 1 and 100 and monitoring the
correctness of results (no mitigation)

® Results
- Average runtime overhead of 15%
- Only 8% of the cases causing more than a 5% overhead
- Higher variance with the monitored program

Test program outputs 623.3 ms 1.4

Monitored program outputs 715.3 ms 2.7

24

Future Work

® The mechanism to support building correct properties

- type based property description
® The type-safety enforced by the module could be improved upon
for further convenience for the programmer

- library of common properties
® Avoid bypassing

- Inserting checking sentences just before runtime
® c.g., Dynamic AOP, Reflection

- Using "Software Diversity" mechanism

e Justification
- Theoretical side
- Practical side

25

Conclusion

® \We developed an efficient and simple runtime
monitoring module for Scala/Akka applications based

on the Actor model
- Properties are written as Scala code
- Asynchronous/Distributed Monitoring and Mitigation

e Case Study

- Blog using Play! Framework
® no spam (no duplicate posts + comments)
® Nno inactive users

- A Desktop Shooting Game
® NOo cheats

e (Good results on the micro-benchmark

26

