
Towards Introducing Asynchronous Tasks to
an FRP Language for Small-Scale Embedded Systems

Akihiko Yokoyama, Sosuke Moriguchi and Takuo Watanabe
Department of Computer Science

Tokyo Institute of Technology

Objective
• Support for the heavy task execution in an FRP language for

small scale embedded systems
• Heavy tasks: tasks that may degrade the responsiveness of the systems

Proposed Method
• A simple asynchronous task execution mechanism that supports

mutual exclusions of computational resources
• Future types
• Tasknodes: special time-varying values for heavy tasks
• Task resources: abstractions of computational resources for heavy tasks

Contribution
• Embedding heavy task executions to reactive programs naturally.

2

• Statically-Typed Pure FRP Language
• Designed for small-scale (resource-constrained) embedded systems

• Ex) AVR, STM32, ESP32 etc.
• Statically-determined runtime memory size
• Nodes represent time-varying values.
• The values in the previous moment can be referred

by @last operator

3

Zumo (CPU: ATmega328p
16MHz, Flash: 32KB, RAM: 2KB)

M5 Stack (CPU: ESP32 240MHz,
Flash: 16MB, RAM: 520KB)

module FunController
in tmp: Float, hmd: Float
out fan: Bool
use Std

node di = 0.81 * tmp +
0.01 * hmd * (0.99 * tmp – 14.3) + 46.3

node init[False] fan = di >= th
node th = 75.0 + if fan@last then -0.5 else 0.5

Emfrp module to control a fan by
discomfort index

4

RobotPosX.mfrp
module RobotPosX # Module Name
in vl : Float, # Left velocity [m/sec]

vr : Float, # Right velocity [m/sec]
t(0) : Int # Elapsed time [msec]

out x : Float, # X-coordinates [m]
use Std, Params # Import library

Intermediate nodes
node dt = (t - t@last) / 1000.0
node init[0.0] theta = theta@last + (vr - vl) * dt / l

Output node (X-coordinates)
node init[0.0] x = x@last + (vr + vl) * cos(theta) * dt / 2.0

X

Y

x

<latexit sha1_base64="pFKY+A3mU8iO/5FjaTXOXdLCjiU=">AAACl3ichVFdSxVBGH5c+9BT5rFujG6GDooRHN49SIYgSkF46dGOCq4tu+McHdyzu+zOWbTl/AH/QEFXBRHRf+imi/wDXfgTokuDbrzwPXsWoiR7h5l55pn3eeeZGT8OdGqIToas4StXr10fGa3cuDl2a7w6cXs9jbqJVC0ZBVGy6XupCnSoWkabQG3GifI6fqA2/P2n/f2NTCWpjsLn5jBW2x1vN9RtLT3DlFttHIjpBeG0E0/mdi9v9BwdGpdeGDGTuYF4KDI3eSAcGaWO2VPGEzvGrdaoTkWIi8AuQQ1lrETVD3CwgwgSXXSgEMIwDuAh5bYFG4SYuW3kzCWMdLGv0EOFtV3OUpzhMbvP4y6vtko25HW/ZlqoJZ8ScE9YKTBF3+gjndIxfaLvdPbPWnlRo+/lkGd/oFWxO340ufbrv6oOzwZ7v1WXejZo43HhVbP3uGD6t5ADffby1ena/OpUPk3v6Af7f0sn9IVvEGY/5fumWn2DCn+A/fdzXwTrjbr9qD7bnK0tPSm/YgT3cB8z/N5zWMIyVtDic1/jM77i2LprLVrPrOVBqjVUau7gj7Ca5zHIm6I=</latexit>

x =
1

2

Z t

0
(vl + vr) cos ✓dt

<latexit sha1_base64="Tzn9i5tF/UCFeBfld50U0egwAuk=">AAACkHichVFNS9xAGH6M1dq16qoXoZfgYlHE5Y1IFUFq24t48qOrgmtDEmd1cDYJyWzAhv0D3nrqwZOFUqQ/wGuLl/6BHvwJ0qOFXjz4bjYgKm3fYWaeeeZ93nlmxg2VjDXRRYfR+air+3HPk0Lv077+geLg0EYcNCJPVLxABdGW68RCSV9UtNRKbIWRcOquEpvuwZvW/mYiolgG/lt9GIqdurPny5r0HM2UXZys6n2hHXPBrNYix0utZqqaVelrm95pczyxI3PKTGw1Ye5qu1iiMmVhPgRWDkrIYyUofkEVuwjgoYE6BHxoxgoOYm7bsEAImdtBylzESGb7Ak0UWNvgLMEZDrMHPO7xajtnfV63asaZ2uNTFPeIlSbG6Ced0hX9oK90Sdd/rZVmNVpeDnl221oR2gNHI+t//quq86yxf6v6p2eNGuYyr5K9hxnTuoXX1ifvP16tz6+Npc/pE/1i/yd0Qed8Az/57X1eFWvHKPAHWPef+yHYmC5bL8ozqzOlxdf5V/TgGUYxzu89i0UsYQUVPvcDzvAN340hY854abxqpxoduWYYd8JYvgGPZ5k5</latexit>

✓ =
1

l

Z t

0
(vr � vl)dt

vl

vr

t dt

th

x

Rotary
Encoder

(Left)

Rotary
Encoder
(Right)

Timer [msec]

LCD(Display)

Node reference

@last reference

Dependency (dataflow) graph of RobotPosX module

5

vl

vr

t
dt

th

x

Rotary
Encoder
(Left)

Rotary
Encoder
(Right)

Timer [msec]

LCD(Display)

Dependency graph

vl vr dt tht x

t th x

Update @last
values &

Manage memory
@last values

Update nodes
Call back

output function
Call back

input function

Node updating cycle (single thread)

Scheduling
(Topological sorting)

(Single) Iteration

// Input C func
void Input(

float* vr,
float* vl,
int* t

) {
// Get values
// from sensors
}

// Output C func
void Output(

float x
) {
// Put values to
// actuators
}

Micromouse
• A robot competition
• Small-scale embedded systems
• Microcontroller (STM32 etc.)
• Sensors

• Infrared sensors
• Rotary encoders
• IMU (accelerometer, gyro sensor)

• Actuators
• Motors
• LEDs

• Computation on graph structures

6
https://en.wikipedia.org/wiki/Micromouse

Problem Setting
• Simplified version of micromouse.
• Starting from the start, the robot explores the maze

autonomously and turns on the LED when it reaches the goal.

7

Goal

Start

Goal

Start

Goal

Start

Hardware Specifications of the Exploration Robot
• Omni-directional mobile vehicle
• Sensors
• Wall sensor: Infrared sensor x4
• Velocity sensor: rotary encoder x3

• Actuators
• Motor with omni-wheel x3
• LED x1

8

Omni-wheel

Infrared
sensor

LED

The center
of the robot

Motor (with rotary encoder)

https://en.wikipedia.org/wiki/Omni_wheel

Naive (Standard) Exploration
• Repeat the following actions until reaching the goal.
• A: Moving the robot to the target section and Stop.
• B: Recording the wall information.
• C: Calculating the next destination by a graph algorithm (e.g., A*).

Improved Exploration
• Wall information can be obtained

before reaching the target position.
→ If A and (B, C) can be executed
concurrently, the latency for
exploring is reduced.

9

Direction of
movements

Center of the
section

(Target position)

Heavy tasks
• Computations not required to be executed every iteration, but

are relatively time-consuming
• Heavy task execution during iterations degrades responsiveness of

the whole system.
• Heavy tasks are assumed to be operations on somewhat

complex data structures.
• E.g., graph algorithms, parsing, etc.
• Updating or searching “maze” in the exploration robot example.

Task resources
• The objects handled by the heavy task
• E.g., the data structures representing “maze”

10

• Time-varying values are not first-class
→ Preventing space / time leak

• Recursive data types and recursive functions are prohibited.
→ Determination of memory used at runtime

• The data structures representing “maze” and related
operations cannot be written in Emfrp.
→ Requires foreign (C language) function calls.

11

Heavy-task execution during feedback from output to input.

12

Dependency graph of the robot module

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Register
Walls

Search
Algorithm

Maze
Graph

Next
Target

Positions

In output function in C
In input function in C

Input Nodes Output Nodes

writereadwriteset

Variables in C language

Heavy task Heavy task

The dependencies and/or the data structures subject to heavy
tasks are not explicitly indicated.

13

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Maze
Graph

Next
Target

Positions

Input Nodes Output Nodes
Relations explicitly
indicated in the Emfrp code

The dependencies and/or the data structures subject to heavy
tasks are not explicitly indicated.

14

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Maze
Graph

Next
Target

Positions

Input Nodes Output Nodes
Relations explicitly
indicated in the Emfrp code

Implicit
dependencies

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Register
Walls

Search
Algorithm

Maze
Graph

Next
Target

Positions

15

Output
function

in C

Input
function

in C

Iteration Loop (single thread)

Output node values
to actuators

Input node values
from sensors

Memory
Management

The sequential execution of heavy tasks in the output function
makes other reactive behaviors less responsive.
• Due to execution model of original Emfrp.
• Reactive Thread Hijacking Problem (RTHP) [Van den Vonder et al. 2020]

Node update

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Register
Walls

Search
Algorithm

Maze
Graph

Next
Target

Positions

16

Output
function

in C

Input
function

in C Node update

Iteration Loop (single thread)

Output node values
to actuators

Input node values
from sensors

Memory
Management

The sequential execution of heavy tasks in the output function
makes other reactive behaviors less responsive.
• Due to execution model of original Emfrp.
• Reactive Thread Hijacking Problem (RTHP) [Van den Vonder et al. 2020]

→ Cannot implement the improved search.

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Register
Walls

Search
Algorithm

Maze
Graph

Next
Target

Positions

17

Node update

Iteration Loop (Main task)

RTOS task (async)

RTOS task (async)

Solution? of P1: Cooperation with concurrent execution libraries.
• E.g., FreeRTOSʼs tasks
• Reactive computations (iteration loop) and heavy tasks can be executed

concurrently.

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Register
Walls

Search
Algorithm

Maze
Graph

Next
Target

Positions

18

Node update

Iteration Loop (Main task)

RTOS task (async)

RTOS task (async)

Solution? of P1: Cooperation with concurrent execution libraries.
• E.g., FreeRTOSʼs tasks
• Reactive computations (iteration loop) and heavy tasks can be executed

concurrently.
• (P3) Mutual exclusions for task resources (shared variables) is required.

→ The advantage of Emfrp (or FRP) is lost.

We want to make heavy tasks and task resources explicit in
the scope of Emfrp.
• Enhance readability and maintainability.

19

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Maze
Graph

Next
Target

Positions

Relations explicitly
indicated in the Emfrp code

Heavy tasks
Register

Walls
& Search
Algorithm

We want to make heavy tasks and task resources explicit in
the scope of Emfrp.
• Enhance readability and maintainability.

20

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Maze
Graph

Next
Target

Positions

Register
Walls

& Search
Algorithm

Relations explicitly
indicated in the Emfrp code

Heavy tasks

We want to execute heavy tasks asynchronously to prevent RTHP.
• Responsiveness of the whole system is not degraded.

→ Asynchronous executions and Future types

21

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Target (x, y)

Wall
Sensors x4

Motors x3

Distance
to target

LED

Wall info

Maze
Graph

Next
Target

Positions

Register
Walls

& Search
Algorithm

Relations explicitly
indicated in the Emfrp code

Asynchronous Execution

Heavy tasks

• Language Extensions
• Future types
• Definitions of tasks and task resources
• Tasknodes: special nodes invoking heavy tasks

• Runtime Extensions
• Inserting an asynchronous execution phase of a task into each

iteration
• Simple task scheduler for resource-constrained environments with

mutual exclusion of task resources

22

• Future types represent the state of the task computation.

23

type Future[A] =
| Ready(A) # Just after the task is completed.
| Pending # Waiting for the task completion
| NotStarted # The task is not issued.

Ready(A)

State transitions of the value of future types

NotStarted Pending

• Definitions of task resources and tasks
• Task resources are compiled to skeleton codes of C structure
• Tasks are compiled to skeleton codes of C function

24

resource MazeGraph {
Task to record wall information of section (u, v) in a MazeGraph instance
task RegisterSection :
(u: Int, v: Int,
n: Bool, e: Bool, s: Bool, w: Bool) -> (h: Unit) / write

Task to compute the next section (next_u,next_v) to go from (u,v) to the goal
task CalcNextSection :
(u: Int, v: Int, goal_u: Int, goal_v: Int)

-> (next_u: Int, next_v: Int) / read
}

Name of task resources

Input parameters of the task

Result of the task

Hint for mutual exclusion

• Definitions of task resources and tasks
• Task resource instance

25

Toplevel module
module MazeRunner
in mg : resource MazeGraph

sn: Int, se: Int, … time(0): Int
out duty1:Int, …
use Std, Resources

node move_dir = …
…

Passing the task resource instance
from C code (activation function)

Tasknode
• Special node that ties the heavy task to the future type node.
• Issue the task when the condition is satisfied.

• Required that state of the task is NotStarted.
• The parameters of the issued task are snapshots of node values.

26

tasknode next : Future[(Int, Int)] =
CalcNextSection(to_u, to_v, G_U, G_V)

with mg at wait(finish_register)

Instance of the task resource
The condition (timing) for issuing tasks

Task name

Node name Future type

Parameter
(snapshots of node values)

• Add phases related heavy tasks to iteration loop
• Issuing tasks
• Executing a task for N (milli)seconds

• N is specified at compile time
• One task execution per iteration (Round-robin scheduling)
• Preemptive task execute using timer interrupts or RTOS tasks

• Traditinal context switch techniques

27

Call
Input

function
Update
Nodes

Call
Output

function
Issue
tasks

Execute
a task

Update @last values
& Manage memory

iteration

• Round-robin scheduling
• Simple task execution management algorithm
• Designed for single-core microcontrollers
• Mutual exclusion of task resources using read/write on tasks
• Execution list, Waiting queues (per task resource instance)

• Maximum queue length can be conservatively estimated.

28

……

……

……

……

…
…

Tasks (issued from tasknodes)

Mutual
exclusions

Waiting queues Execution list Task to be executed

Heavy-task execution with future nodes.

29

Dependency graph of the robot module

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Wall
Sensors x4

Motors x3

Distance
to target LED

Wall info

Input Nodes Output Nodes

Registering
Wall Info

Next
Target

Current
Target

Tasknode (Future type)

Heavy-task execution with future nodes.

30

Dependency graph of the robot module

Submodule
to calculate
the speed by
PID control.

time

Rotary
Encoders x3

Wall
Sensors x4

Motors x3

Distance
to target LED

Wall info

Input Nodes Output Nodes

Registering
Wall Info

Next
Target

Current
Target

Asynchronous Execution Asynchronous Execution

iteration

• Actor-Reactor model [Van den Vonder et al. 2020]
• A method to separate and modularize reactive (reactor) and

procedural (actor) behavior descriptions.
• Actors (heavy tasks) and reactors are in single language (Stella).

• Dependencies are explicitly defined in the single language.
• They also advocated Reactive Thread Hijacking Problem.

• Lustre with Futures [Cohen et al. 2012]
• Lustre: a synchronous dataflow language
• Their future types enables concurrency, pipelining and jitter control.

• Compiled into Javaʼs threads.
• Not for heavy tasks defined as foreign (C language) functions.

31

• Implementation and evaluation of Emfrp compiler with
proposed methods.

• Design of abstractions for task resources
• Coarse-grained task resources are sufficient for current examples.

• Heavy tasks are computationally bound heavy tasks in this presentation.

• We need more fine-grained resource abstractions for I/O devices.
• I/O bound heavy tasks will handle network or serial ports.

32

• We proposed an asynchronous task execution mechanism for
Emfrp, an FRP language for small embedded systems.

• The mechanism enables the heavy task executions while
keeping sufficient responsiveness.

• We showed the usefulness of the mechanism through the
explanation of an non-trivial example.

33

