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Abstract

As IoT devices advance, their microcontroller systems-on-
a-chip (SoCs) demand higher speeds, more memory, and
advanced peripherals, leading to increased power consump-
tion. Integrating low-power (LP) coprocessors in SoCs can
reduce power usage while maintaining responsiveness. How-
ever, switching application execution to and from the copro-
cessors generally involves complex and platform-specific
procedures. We propose a JIT compilation method for man-
aged programming languages to streamline LP coprocessor
use. Our prototype for the programming language mruby
includes a JIT compiler and a seamless processor-switching
mechanism, enabling rapid development of IoT applications
leveraging LP coprocessors. This work-in-progress paper
describes the design and implementation of the extended
mruby interpreter and presents preliminary evaluations of its
power consumption and latency on ESP32-S3 and ESP32-Cé.

CCS Concepts: « Software and its engineering — Inter-
preters; Just-in-time compilers; « Computer systems
organization — Embedded software.
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1 Introduction

Recent microcontroller systems-on-a-chip (SoCs) accommo-
date rich peripherals and large enough memory resources to
meet the requirements for various Internet-of-Things (IoT)
applications. For example, an ESP32-S3 SoC module incor-
porates WiFi, 512 KiB Static RAM, and 4 MiB or more Flash
memory [7]. Despite the growing demands of complex tasks
(e.g., communication via MQTT, HTTPS with JSON) per-
formed in such devices, C, C++, and assembly language are
still used as the primary implementation languages. So, mem-
ory errors and the difficulty of debugging optimized compiled
binaries have plagued developers.

To help the rapid development of IoT applications, high-
level programming languages with rich programming envi-
ronments have been proposed for embedded devices [14, 16-
18, 23, 25, 28]. Language features, such as dynamic typing
and garbage collection (GC), can facilitate the development of
complicated but memory-safe IoT devices. For the languages
listed above, bytecode VMs running on the target devices are
often used instead of native code compilers running on the
development host machines. These provide rapid, interac-
tive development. In addition, they make live code updates,
such as Over-The-Air updates, much easier than with C/C++.
While these are not suitable for real-time systems due to a
(naive) GC, there are many applications suitable for these
languages, such as agriculture, meteorological observation,
etc.

However, while low power consumption and responsive-
ness are essential for IoT devices, execution by a VM con-
sumes more power than native code. Putting the processor
in sleep mode reduces power consumption but at the ex-
pense of responsiveness. To solve this problem, SoCs with
low-power coprocessors (LP coprocessors) that operate while
the main processor is sleeping are gaining popularity. For
this purpose, LP coprocessors operate with limited resources.
The amount of available memory and accessible peripherals
should be limited. Moreover, the address space and processor
architecture may also differ from those of the main proces-
sors. Thus, developing applications that take advantage of LP
coprocessors usually requires writing complex procedures
in C/C++ that directly access the hardware.

This work aims to facilitate the development of applica-
tions that utilize LP coprocessors using a dynamically typed
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Table 1. The Specifications of the Targets

| ESP32-S3  ESP32-C6
Main Processor ISA | Xtensa LX7 RV32IMAC
LP Coprocessor ISA | RV32IMC  RV32IMAC
Main SRAM [KiB] 512 512
RTC Slow Memory [KiB] 8 16

managed language. Toward this goal, we introduce a JIT com-
piler and an execution migration mechanism into mruby/c'
to execute code on LP coprocessors. These mechanisms al-
low, within an mruby script, seamless switching between
the main processor and coprocessor execution in a SoC. Our
current contributions are implementations and preliminary
evaluation of the mechanisms.

We target two microcontroller SoCs, ESP32-S3 [6] and
ESP32-C6 [8]. The main processor and the LP coprocessor
are connected via the interconnect. They interact via the
RTC Slow Memory, a memory for the LP coprocessor. Dur-
ing the light-sleep state, the LP coprocessor can access only
the RTC Slow Memory. This memory can be accessed via
the interconnect and is memory-mapped. In ARM-based mi-
crocontrollers, a coprocessor, processors, and memories are
connected via the AXI interconnect bus [12, 21, 22]. We guess
that ESP SoCs are implemented like ARM-based microcon-
trollers. Table 1 shows the specifications of these targets. The
LP coprocessor has limited accessible memory space, accessi-
ble peripherals, and processor performance, compared to the
main processor. Thanks to these limitations, the LP coproces-
sor of ESP32-S3 consumes 200 pA, while the main processor
consumes 13.2 mA at the lowest frequency (40 MHz) [6].

The rest of this work-in-progress paper is organized as
follows. The next section describes related works. Section 3
provides two simple examples to illustrate how to switch ex-
ecution between the main processor and the LP co-processor.
Section 4 describes our proposed method for JIT compilation.
Then, Section 5 presents the preliminary evaluation results.
Finally, Section 6 discusses the future work and Section 7
concludes the paper.

2 Related Work
2.1 Ahead-of-Time Compilation

Static TypeScript [1] is a subset of TypeScript with an Ahead-
of-Time (AoT) compiler. It targets small-scale embedded de-
vices, which have only 256-512 KiB ROM and 16-256 KiB
RAM. Although AoT compilation gives better performance,
it can result in larger compiled binaries occasionally. Our

Imruby [20, 29] is a lightweight implementation of Ruby, and mruby/c [23] is
an implementation of the mruby runtime that runs on resource-constrained
devices. We chose mruby for this study because information on RiteVM (the
mruby VM) is relatively easy for us to obtain compared to MicroPython [25]
or other languages.
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target can communicate over WiFi and potentially manip-
ulate JSON data (an example of the highly dynamic data
structures). Thus, conservative type checking may generate
larger codes. However, AoT compilation can generate better
codes for well-typed programs and is suitable for real-time
systems. Depending on the application, it is important to
employ AoT or JIT compilation properly.

2.2 Tiny Interpreters

The Ribbit system [30] is a compact Scheme interpreter with
a footprint of 4 KiB, and the following work [24] implements
the R*RS standard in 7 KiB by using LZ compression for
bytecodes. Without compression, it exceeds 8 KiB. This sug-
gests that compiling or transferring functions on demand is
necessary. Even though bytecodes tend to be smaller than
machine code [3], the small memory of the LP coproces-
sor cannot accommodate all of the standard libraries. We
must declare functions used in LP coprocessors, or func-
tions must be compiled/transferred on demand. Moreover,
while Scheme is simple, popular high-level programming
languages in embedded systems such as Ruby and Python
are more complicated. Hence, we think that it is difficult to
implement an interpreter for such languages within 8 KiB.

2.3 Just-in-Time Compilation

2.3.1 On Embedded Devices. Some works [10, 19, 27] de-
veloped just-in-time (JIT) compilers for resource-constrained
devices. These works imply that ESP32 can do JIT compi-
lation. With the fact that programs on LP coprocessors are
usually small, it is possible to run a JIT compiler on main
processors to generate programs for LP coprocessors. The
conventional main purpose of JIT compilers is the code speed,
but our purpose is a small memory resource. An efficient
code is not always minimum, for example, excessive code
duplication (code specialization) should be avoided.

2.3.2 For Dynamic Languages. Lazy basic block version-
ing [4] is a JIT compilation technique suitable for dynamic
programming languages and is used in the Ruby compiler
YJIT [5]. The compiler incrementally compiles one basic
block at a time. Compiled basic blocks have branch stubs
for branches to uncompiled basic blocks. When execution
reaches such stubs, the compiler resumes the code genera-
tion. The header of each basic block has a typing context for
local variables, and basic blocks are specialized according
to the typing context. The destination of compiled code of
branches is determined not only by the program location
but also by the typing context. This technique avoids heavy
and complex implementations such as type analysis. How-
ever, it still requires its own partial evaluator for compiler
optimizations such as constant folding and devirtualization.

Trace-based JIT [10] is also a JIT compilation technique
to detect and compile frequently executed program paths. It
gathers constant-foldable values and types of local variables
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by executing programs by the interpreter. It reduces the
code size of the compiler, which is suitable for resource-
constrained systems. However, generated codes by trace-
based JIT may occur too many code duplications. As a result,
the generated code may exceed the memory resource of the
LP coprocessor.

2.4 Execution Migration

Execution migration is to migrate a running program across
heterogeneous-ISA (Instruction Set Architecture). One of
the purposes of execution migration is to run programs on
suitable processors for performance or power consumption.
Some works [2, 11] compile statically and generate bare
binaries, unlike our approach. In embedded systems, a big
issue of execution migration is code size overheads for state
transformation (transforming stack frames and the heap) at
migration points. It is possible that the compiled binary is
twice as big. UNIFICO [15] solves this problem by adjusting
the stack and limiting the number of registers. These works
allow execution migrations at any call site. We believe that
a carefully designed migration granularity can reduce such
overheads in applications of LP coprocessors.

Emerald [13] is a managed programming language de-
signed for distributed computing. Objects in Emerald can
freely move within the distributed system, and developers
can explicitly move objects. Unlike Emerald, in our work,
the LP coprocessor and the main processor work exclusively.
Thus, developers do not need to think about the concurrency
so we will not provide primitives such as monitor. Moreover,
we try to move objects automatically on demand without
modifying the object system in Ruby.

3 Motivating Example

Mainly, (general purpose) coprocessors of microcontrollers
have two purposes: for lower power consumption and for
real-time tasks. Our approach is not suitable for real-time
systems because we employ JIT compilation that results in
a long pause time when execution reaches uncompiled pro-
gram locations. Therefore, we focus on the lower power con-
sumption purpose. In this section, we show two motivating
examples. The former is used in the preliminary evaluation.

3.1 LED Blinking

LED blinking is a popular test case of embedded systems.
Listing 1 is an example using the LP coprocessor, written in
Ruby. In this example, the GPIO4 and GPIOS5 pins are con-
nected to an LED and a tactile switch, respectively. When the
Copro#run method is called, the JIT compiler starts to com-
pile the given block. Eventually, the LP coprocessor executes
the compiled code and the main processor sleeps (explained
in Section 4.1). When the given block is finished (i.e., after
the tactile switch is pressed), the main processor wakes up
and executes the following program.
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Listing 1. LED blinking in Ruby

1 |Copro.run do

2 prevPress = false

3 press = false

4 # While the tactile switch is not pushed.
5 while (!prevPress ||

6 press) do # Negative Edge

7 Copro.gpio(4, true) # Turn on the LED.
8 Copro.delayMs(30) # Sleep for 30 ms.
9 Copro.gpio(4, false) # Turn off the LED.
10 Copro.delayMs(30)

11 prevPress = press

12 press = Copro.gpio?(5) # Check the switch.
13 end

14 | end

15 | # LP coprocessor never executes here.

Listing 2. IoT Sensor in Ruby

1 | sensor = SHT3xSensor.new(I2C.new(5,4))

2 # May be set by the JSON config.

3 | buffer = Array.new(60)

4 | Copro.run do

5 (0...60).each do |i]

6 Copro.delayMs(1000%60) # Sleep for 1 min.
7 buffer[i] = sensor.read() # Read from sensor.
8 end

9 | end

0

—_

Network.send(buffer) # Send buffered data.

In this way, we can save the number of migration points
discussed in Section 2.4, if we use a static compilation ap-
proach. Migration points are only before/after the call sites
of Coprottrun. Stack frame transformations are unnecessary;
it only transfers the closure (Proc object in Ruby) to the
LP coprocessor because the LP coprocessor never executes
outside the Copro#run.

3.2 IoT Sensor

IoT sensors are popular applications to sense humidity, mo-
tion, pressure, etc. They gather environmental information
from sensors and send gathered information over the net-
work to a central server. Some sensors consume lower cur-
rent than the main processor, e.g., a humidity and tempera-
ture sensor consumes 600 pA typically [26]. The LP coproces-
sors of our targets can interact with sensors connected over
communication methods such as I?C, 1-Wire, and analog-
to-digital converters. If the IoT sensor sends to the server
infrequently, waking the main processor for measurements
affects the battery life.

Listing 2 is an example of an IoT sensor in Ruby. Ruby’s
subtyping mechanism allows the creation of interfaces that
are independent of specific sensors or communication meth-
ods. In our implementation, this mechanism can also be used
on the LP coprocessors. Thus, if the production of compo-
nents, such as sensors, becomes discontinued, we can pre-
pare a new code for the replacement components with small
changes.
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Figure 1. An Overview of Just-in-Time Compilation

4 Summary of Proposed Method

However, the LP coprocessors of our targets do not have
enough memory to run the VM, so we introduce a JIT com-
piler running on the main processor to generate code for the
coprocessor dynamically. This section briefly describes our
JIT compiler and discusses object management between the
main processor and coprocessor.

4.1 Just-in-Time Compilation
Our method is based on lazy basic block versioning [4]. It
avoids traditional type analyses. Type analyses can be com-
plex and heavy to support richer type representations. The
generated programs for the LP coprocessor also may become
inefficient and large due to the conservative type checking.
We consider that gathering types by running the program is a
cheap way for the footprint and the computation complexity.

However, we use the interpreter for the first execution
like trace-based JIT [10] to reduce the processor wake-ups
and the execution migrations. Unlike trace-based JIT, the
generated codes are divided into basic block versions. This al-
lows compiled basic blocks (including functions) to be reused
in the different code paths. Similar to trace-based JIT, our
method reuses the original mruby/c interpreter. It reduces the
runtime footprint?. In addition, if an executing basic block
is not appropriate to compile and execute on the LP copro-
cessor (e.g., low frequently executed, or using not supported
features (e.g., too dynamic features) on the LP coprocessor),
it allows to run on the main processor seamlessly.

Figure 1 shows the control flow graph corresponding to
Listing 1. Each node is a basic block split by method callings

2Currently, we copied the original one.
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and branches, whose label represents the line number on
Listing 1. First, uncompiled basic blocks are executed and
traced on the main processor (1). The traced basic blocks
are compiled while applying optimizations such as type spe-
cialization. Then, when it reaches a compiled basic block,
the LP coprocessor executes the compiled basic blocks (1 —
2). During execution on the LP coprocessor, the main pro-
cessor sleeps. After that, when the LP coprocessor reaches
the uncompiled basic block, the main processor wakes up
and executes and compiles the uncompiled basic block (3). In
the LED blinking example, this is happened when the tactile
switch is pushed. Like lazy basic block versioning, new basic
block versions may be generated (4). If the Copro#tgpio? (1.12)
does not return a boolean value at the second time, a new
basic block version for L6 is created.

4.2 Objects

During execution on the LP coprocessor, shapes of objects
are fixed. Unlike Python, Ruby does not allow to access in-
stance variables outside instance methods. We assume that
programs on the LP coprocessor do not use too dynamic
features. On the LP coprocessor, too dynamic features such
as Object#extend and class definitions are disallowed. As a
result, objects can be realized without hash tables. We note
that dynamic features still can be used on the main processor
(outside Copro#run).

A Method object on the main processor can contain a
pointer to a C function on the LP coprocessor, in addition
to a C function on the main processor. When it is called, it
executes the C function on the main processor; instead, the
compiled code calls the C function on the LP coprocessor.
Copro#gpio and Copro#delayMs use this to execute on both
processors.

5 Preliminary Evaluation
5.1 Evaluation Detail

We evaluate the code size and the wake-up/compile over-
heads by the LED blinking example (described in Listing 1)
with the initial implementation. Currently, it supports:

e Integers, Booleans and nil

o Arithmetic operators

e A single call frame migration

e Calling methods defined in C

e Garbage Collection (however, not used)

and does not support:

Objects including Arrays, Strings and Hashes
Calling methods defined in Ruby

Global variables

Closures

Table 2 shows the evaluation environment. We evaluated
under following configurations:
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ESP32-S3 (3.3 [V])
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ESP32-C6 (3.3 [V])

80 — 60 —
60
O e i 33SMAL |
—~ 40 —
P N I VTV VIVTI 3050mAl__ | NI T 20
g 0 g 1.9 [mA] .
s L 2.5 [mA] I 5 O . ' ‘ T
O o0F ! ! ! e Tactile switch (GPIOS) ! !
Tactile switch (GPIO5) | | !
-20 MLED (GPIO4) ! 20 D (GPIOﬂ) '—‘ |
40 L ! L L 40 L ! L i
0.8 0.9 1 1.1 1.2 0.6 0.7 0.8 0.9 1
Time [s] Time [s]
Figure 2. Current Consumption Results
Table 2. The Evaluation Environment Table 3. The Runtime Code Size [B]
Role \ Name and Revision Main Processor
ESP32-53-DevKitC-1 N8, v1.0 Target .data+.bss .text .rodata | Copro.
Evaluation boards ESP32-C6-DevKitC-1 N8, v1.3 ESP32-S3 Orig. 2582 48928 6511 0
(Main processors freq. : 160 [MHz]) Ours 2614 68411 6864 1336
SDK ESP-IDF v5.2.1 ESP32-C6 Orig. 2574 57456 6615 0
Ammeter Nordic Power Profiler Kit 2 (PPK2) Ours 2614 80822 6968 3072

Signal Generator Nodemcu ESP8266 Ver 0.1

e The signal generator simulates the tactile switch in-
put. It makes GPIO5 (tactile switch) high for 160 [ms],
120 [ms] after GPIO4 (LED) is high at the first time.

e The sample rate of PPK2 is 100 [kHz]. It delivers the
3.3 [V] power to the targets and captures GPIO signals.

e On the ESP32-C6-DevkitC-1, the jumper is removed
to disconnect the power-on indicator LED and the
UART/USB controller [9]. However, on the ESP32-S3-
DevkitC-1, there is no jumper so they are connected.

e The commit hash of mruby/c that we use is 73¢1324f93.

e The watchdog timers are disabled.

e We used the light-sleep state because the deep-sleep
state cannot retain the main memory.

We measured the code size of the mruby runtime by
$ idf.py size-components provided by ESP-IDF SDK. We
also measured the wake-up time of the processors. GPIO1
becomes high before the running processor wakes the other
processor and becomes low after the other processor is ready.

5.2 Result and Discussion

Table 3 shows the code size of the mruby runtime. The code of
the LP coprocessor contains the garbage collector, the imple-
mentations of Copro#delayMs, Copro#gpio, and the bootstrap.
The code size changes are about 20 [KiB]. Since we currently
copy the original interpreter and modify it, these changes

are not small compared to the interpreter code size (about
55 or 65 [KiB]). This suggests that the code should be shared
between the interpreter and the JIT compiler when the ROM
size is limited.

The memory overheads on both targets are:

e Profiling data on the main processor: 776 [B]
e Generated codes on the LP coprocessor: 220 [B]

Profiling data manages the register allocation and the typings.
The generated code has many move instructions for constant
values. This can be reduced if the copy-on-write register
allocation is implemented (discussed in Section 6.1).

Figure 2 shows the current consumptions. In the figures,
the horizontal dashed lines represent approximate values un-
der steady-states. 30.5 [mA] and 33.5 [mA] are the power con-
sumption of the main processor, and 2.5 [mA] and 1.9 [mA]
are the power consumption of the LP coprocessor. By using
the LP coprocessors, we can see that the power consumption
is reduced by about 10 times. The vertical dashed lines in the
figures represent when the main processors wake up or enter
the sleep state. At the first vertical dashed line, the main pro-
cessors enter the sleep state. At the second vertical dashed
line, the main processors wake up and compile the follow-
ing program for the LP coprocessors, then enter the sleep
states. Since The tactile switch input changes its value, the
taken branch is changed, and the uncompiled basic block is
compiled. After the third dashed line, execution of Copro#run
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Table 4. Wake-Up Time Overheads [ms]

| ESP32-S3  ESP32-Cé6

The Main Processor 0.51 0.58
The LP Coprocessor 0.18 0.02

finishes, and the main processors continue to work. Com-
paring before/after the first dashed line, we observed that
the power consumption is reduced by the LP coprocessor. In
this example, ten basic block versions are generated, but the
main processor has only woken up twice. This is due to the
tracing of the first execution by our method.

Table 4 shows the elapsed time of processor wake-ups.
These overheads are inevitable when a processor wakes up,
and are expected to be a problem for some applications.
For example, I?C standard mode operates at 100 [kHz] (i.e.
1-bit per 0.01 [ms]). If the processor wakes up during the
I2C communication by software, the timing is not met. We
believe that entering the sleep state with a delay can alleviate
this problem.

6 Future Work

6.1 Code Generation

Because the mruby bytecode is a register machine, the reg-
ister allocation is simply done with one-pass algorithms.
However, the instruction format is represented as (R_i is the
ith register.):

1‘ADD i#Ri=Ri+R(it1) \

This frequently introduces move instructions despite the
three-address code of RISC-V, the target (as follows).

1‘addi, i, k#Ri =R +RK ‘

To reduce the code size, we should implement a copy-on-
write register allocation algorithm. However, using a sim-
ple one-pass algorithm, each basic block version must have
allocated register numbers for local variables because the
allocated registers may be different with the code path. Using
a two-pass algorithm, the generated code is minimal, but
the code size of the compiler and the compilation time will
be larger (The instruction format of the mruby bytecode is
variable-sized). We must design the register allocation while
considering the trade-off between the generated code size
and the compilation overhead.

6.2 Object Management

Because objects are transferred on demand, read barriers are
required, e.g., before reading an instance variable. Before a
pointer outside the memory region available for the LP co-
processor is copied into a register, the object pointed at must
be transferred and the pointer must be translated. Instead
of barriers, we consider that the hardware interrupts can
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be used. The handler for the bus error interrupts® searches
an Least-Recently-Used (LRU) table. The table has combina-
tions of addresses translated from and to. If the pointer is not
found in that table, it may not have been transferred. The
main processor wakes up to transfer the object. The main
processor also has a complete (non-LRU) table. If the pointer
is found in that table, the main processor tells the LP copro-
cessor the translated address. If it is not found, the object
is transferred and then is told to the LP coprocessor. For-
tunately, popular microcontrollers do not overlap memory
regions among the LP and main processors.

6.3 1/0

In modern microcontrollers, the control registers of peripher-
als are memory-mapped. The problem is how to implement
I/0 functions. When the developer implements I/O functions
in C language, additional machine codes have to be placed on
the LP coprocessor. Even when the I/O functions are actually
not used, these codes still have to be placed beforehand. It
is a problem if live code updates happen. To avoid this, a
relocation infrastructure for C functions is required.

To implement I/O functions in Ruby, we consider the dif-
ferences in the memory-mapped addresses of the control
registers between the processors. To solve this, we need to
define an address translation function in C language, sepa-
rately. Another solution is to perform the address translation
on the bus error interrupts. However, guarding in the Ruby
program cannot solve this problem because programs exe-
cuted on the LP coprocessor must be executed on the main
processor during compilation.

7 Concluding Remark

In this work-in-progress paper, we propose a method for
utilizing low-power (LP) coprocessors in microcontroller
SoCs using a dynamically typed managed language. The pro-
posal introduces a JIT compiler for LP coprocessors that do
not have sufficient memory and an inter-processor object
management method. Our proposal enables seamless use of
LP coprocessors in mruby scripts. We implemented a pro-
totype based on mruby/c running on two microcontroller
SoCs ESP32-S3 and ESP32-Cé6. The evaluation of their power
consumption and the wake-up time of each processor shows
that the proposed method has sufficient practical use.
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