
渡部研究室
Programming Systems Group

1

主な研究テーマ
• プログラミング言語
• 形式手法
• 組込みシステムとCPS

教員
渡部卓雄（教授）
プログラミング言語の設計と実装，メタプログラミングとリフレクション，
アクターモデルと並行オブジェクト，関数プログラミング

森口草介（助教）
ソフトウェアおよび各種システムの形式的記述と検証，定理証明支援系，
プログラミング言語の意味論，抽象議論フレームワーク

最近の研究
• 組込みシステムとCPSのための
関数リアクティブプログラミング言語
• 逆計算・形式手法

学生(2026年1月現在)
博士2, 修士5, 学士3

https://www.psg.c.titech.ac.jp

https://psg.c.titech.ac.jp
https://www.psg.c.titech.ac.jp
https://www.psg.c.titech.ac.jp

プログラミング言語の研究
• 理論：プログラミング言語の意味論，型システム等
- プログラムやプログラミング言語の性質の理解
- プログラムの検証
• 言語設計：新しい言語や言語機構の提案
- プログラムの開発効率の向上（評価は難しい）
- プログラムがある特定の性質をもつことを保証（例：型安全性，メモリ安全性）
• 実装技術
- 実行速度の向上，省メモリ化，低消費電力化
• 応用

2

設計

実装

理論
応用

組込みシステムとCPS向けの
関数リアクティブプログラミング(FRP)言語
• 目的：組込みシステム・CPSの開発効率・安全性の向上
- CPS: サイバーフィジカルシステム
• チャレンジ
- 言語設計：表現力と静的特性のバランス，モジュール性，非同期処理
- 実装：低速・低機能CPU，少メモリ，省電力化，分散化，高信頼化
• 現在のプロジェクト
- 実時間処理，低消費電力化，分散化
- リソース制約を保証する型システム
• 今後の課題
- 形式検証

3

in1 λ

λ
in2

λ

λ

λ

λ

out

Host1

Host2

Host3

Host4

手続き型言語を使った
組み込みシステムの記述例

4

Sensor tmp(TEMP_SENSOR);
Sensor hmd(HUMID_SENSOR);
GPIO fan(FAN_SWITCH);

while (true) {
 float t = tmp.read();
 float h = hmd.read();
 float di = 0.81 * t + 0.01 * h
 * (0.99 * t - 14.3) + 46.3;
 fan.write(di >= 75.0);
}

ポーリング

入力→計算→出力の繰返し．反応速度は遅い入力に
依存する．複雑な動作の記述には向かない．

例題：温度・湿度センサの値から不快指数を
求め，その値が75以上の時にファンを回す．

コールバック（割込み）
Sensor tmp(TEMP_SENSOR);
Sensor hmd(HUMID_SENSOR);
GPIO fan(FAN_SWITCH);
float t, h;
bool fan_state = false;

tmp.onChanged(lambda(float v) {
 t = v; changeState(); });

hmd.onChanged(lambda(float v) {
 h = v; changeState(); });

synchronized void changeState() {
 float di = 0.81 * t + 0.01 * h
 * (0.99 * t - 14.3) + 46.3;
 bool s = di >= 75.0;
 if (fan_state != s) fan.write(s);
 fan_state = s;
}

入力が変化したときに呼ばれる関数を記述する．動作が複雑
になるとプログラムがかなり複雑になる（callback hell）．

関数リアクティブプログラミング(FRP)
• 関数プログラミングの考え方にもとづいて，リアクティブシステムの記述を支
援するプログラミングパラダイム
- リアクティブシステム：外界から連続的・非連続的に与えられる入力に反応し続けるシス
テムのこと．入力のタイミングや順番は予測できない．
• 例：GUI，組込みシステム，サイバーフィジカルシステム(CPS)
• 対義語：変換的(transformational)システム．有限な入力に対して答を出力して停止する（古典的
な計算モデルにもとづく）システム．

- FRP言語の例：Fran [Elliot '97], Yampa [Hudak '03], Elm [Czaplicki, '12], etc.
• ポイント：時間とともに変化する値を時変値(Time-Varying Value)として表
現し，その上の計算としてリアクティブな動作を記述する．

5

FRP言語による記述

6

module FanController
in tmp : Float # 温度センサ
 hmd : Float # 湿度センサ
out fan : Bool # ファンのスイッチ
use Std

node di = 0.81 * tmp + 0.01 * hmd
 * (0.99 * tmp - 14.3) + 46.3;

node init[False] fan = di >= th

node th = 75.0 +
 if fan@last then -1.0 else 1.0

本研究室で開発した組込みシステム向けFRP言語
Emfrpによる記述．

Emfrpのプログラムは，時変値を節点，それらの依存関係を有向
辺とする有向グラフとして図式化できる．fanからthへの辺は，th
の定義におけるfanの直前値の参照（プログラム中のfan@last）
を表している．この仕組みにより，Emfrpは副作用を持たない関
数型言語にもかかわらず状態を持つ動作を記述できる．

プログラム中のtmp, hmd, di, fan, th は時変値で
あり，時間と共に変化する．このプログラムでは，
ファンのモータを保護するためのヒステリシス制御
も行っている．

Emfrp処理系:
github.com/psg-titech/emfrp

https://github.com/psg-titech/emfrp

Emfrpの特徴
• 純粋な関数リアクティブプログラミング言語
- 静的型，型推論，代数的データ型
- コールバックやリフティングが不要（時変値と普通の値を混在できて直感的に書ける）
• マイクロコントローラなどの小規模組込みシステム向けに設計
- ソースコードは標準的なCにコンパイルされる
• プラットフォーム依存の部分とリンクすることで実行可能コードを生成
- 実行時のメモリサイズが静的に決定される
• 実行中にメモリ不足になることはない
- 時変値の更新に用いる式の計算の停止性を保証
• 実行中にハングして無反応になることはない

7

• 時変値を一級データとしない
• データ型・関数定義における
再帰を禁止

倒立振子ロボットの記述例

8

Pololu Balboa 32U4
(ATmega 32U4, 32KB

Flash, 2.5KB RAM)
github.com/psg-titech/emfrp_samples

module Balancer
in gyroY : Int, # gyroscope (y-axis)
 accX : Int, # accelerometer (x-axis)
 encL : Int, # left motor encoder
 encR : Int # right motor encoder
out motorL : Int, # left motor
 motorR : Int # right motor
use Std
... # definitions of constants

node init[0] angle =
 (angle@last + gyroY * update_time_ms) * 99 / 100

node speedL = encL - encL@last
node speedR = encR - encR@last
node init[0] distL = distL@last + speedL
node init[0] distR = distR@last + speedR

node risingAngleOff = gyroY * angle_rate_ratio + angle
node init[0] motor =
 motorSpeed(motor@last +
 (angle_resp * risingAngleOff +
 dist_resp * (distL + distR) +
 speed_resp * (speedL + speedR)) / 100 / gear_ratio)

node diffSpeed = (distL - distR) * dist_diff_resp / 100
node motorL = if accX > 0 then motor + diffSpeed else 0
node motorR = if accX > 0 then motor - diffSpeed else 0

https://github.com/psg-titech/emfrp_samples

なぜ新しい言語なのか？
• 構文や型による（強力な）制約が欲しい
- 「この言語で書いたプログラムではこういう性質が常に成立する」と言いたい
• Emfrpの場合：メモリ制約，更新処理の停止性，実時間性，etc.

• 「C++ / Rust / Python / Haskell, etc の拡張ではダメなの？」
- 時変値（あるいはシグナル関数）を既存言語のオブジェクトや関数として表現する必要
• x = y + z を x = app2 lift2(+) (y, z) のように書きたくない
- 新しいアイディアが既存の言語上で必ずしも素直に表現できるとは限らない
• 例）BCT（データの大きさを静的に規定する型システム）

9

FRP言語に関する最近の研究
• Emfrp-VM：対話的FRP言語処理系のためのバイトコードVM [APRIS'24]
• Emfrp/S：周期的タスクの効率的な実行機構 [ICSCA'24]
• TEFRP：タイミング記述方式の提案 [WCTP'23]
• 低電力コプロセッサの活用 [SWEST25][APRIS'23]
• EvEmfrp：周期的・非周期的タスクの記述/実行方式 [REBLS'23]
• Multiparty FRP：分散型FRPのための同期手法の提案 [WSSE'23]
• Emfrp-REPL：マイクロコントローラ上で動作するインタプリタ [MoreVMs'23]
• 非同期タスク機構の導入 [REBLS'22]
• EmfrpBCT：使用メモリ量を規定できる再帰的データ型 [JIP'21]
• XFRP-G：GPGPU上でのFRPの実行方式 [ICSCA'21]
• XStorm：状態依存動作のための抽象化機構 [TPRO'20]

10

• 実時間性の保証
• 静的性質の保証
• 低電力化
• 分散化・並列化
• モジュール性向上
• 開発支援

https://www.psg.c.titech.ac.jp/posts/2024-11-05-APRIS2024.html
https://www.psg.c.titech.ac.jp/posts/2024-02-01-ICSCA2024.html
https://www.psg.c.titech.ac.jp/posts/2023-12-04-WCTP2023.html
https://www.psg.c.titech.ac.jp/posts/2023-08-31-SWEST25.html
https://www.psg.c.titech.ac.jp/posts/2023-11-01-APRIS2023.html
https://www.psg.c.titech.ac.jp/posts/2023-10-23-REBLS2023.html
https://www.psg.c.titech.ac.jp/posts/2023-09-22-WSSE2023.html
https://www.psg.c.titech.ac.jp/posts/2023-03-13-MoreVMs2023.html
https://www.psg.c.titech.ac.jp/posts/2022-12-07-REBLS2022.html
https://www.psg.c.titech.ac.jp/posts/2021-10-15-JIP.html
https://www.psg.c.titech.ac.jp/posts/2021-02-23-ICSCA2021.html
https://www.psg.c.titech.ac.jp/posts/2020-04-27-IPSJPRO.html

組込みシステム向けSoCにおける
コプロセッサのためのJITコンパイラ
• 組込みシステム向けSoC（System on a Chip, CPU
や周辺回路を一つのチップにしたもの）には省電力
動作のためのコプロセッサを持つものがある．
- 例：Espressif ESP32S3 (main: Xtensa LX7, co: RISC/V
RV32IMAC)

• 本研究ではmruby/cにコプロセッサ用
JITコンパイラを導入し，高水準言語で
コプロセッサをシームレスに扱うことの
できる仕組みを提供する．

11

main
Xtensa LX7
≥ 20mA

coprocessor
RISCV RV32

≥ 7uA

SRAM
512KiB,
Flash

RTC slow
memory
8/16KiB

WiFi,
PWM,

SPI, etc.

GPIO,
I2C, A/D

ESP32S3

メイン コプロセッサ メイン

[SWEST26]
[MPLR '24]
[SWEST27]
[MPLR '25]

消費電力

https://www.psg.c.titech.ac.jp/posts/2024-08-29-SWEST26.html
https://www.psg.c.titech.ac.jp/posts/2024-09-19-MPLR2024.html
https://www.psg.c.titech.ac.jp/posts/2025-08-28-SWEST27.html
https://www.psg.comp.isct.ac.jp/posts/2025-10-14-MPLR2025.html

逆計算
• 出力から入力を計算すること
- 可逆計算：出力から入力が一意に定まるような計算
- 量子計算，可逆回路等
- プログラミング言語関連
• 可逆プログラミング言語（例：Janus）
• 互いに逆になることが保証された2つのコードの記述手法
- 応用：圧縮/展開，エンコード/デコード，デバッグ
• 同期的データフロープログラミングにおける逆計算
- リアクティブシステムのための逆計算方式の提案 [コンピュータソフトウェア'24]
- Coq/Agdaを使った定式化と証明 [WCTP '24]

12

procedure fib(int x1, int x2, int n)
 if n = 0 then
 x1 += 1
 x2 += 1
 else
 n -= 1
 call fib(x1, x2, n)
 x1 += x2
 x1 <=> x2
 fi x1 = x2

procedure main()
 int x1
 int x2
 int n
 n += 4
 call fib(x1, x2, n)

Janusによるプログラムの例

https://www.psg.c.titech.ac.jp/posts/2024-04-01-CompSoft.html
https://www.psg.c.titech.ac.jp/posts/2024-11-04-WCTP2024.html

プログラミング言語から形式手法へ
• 形式手法(formal method)
- 数学（論理学）に基づき信頼性・頑健性の高いソフトウェアを構築するための各種手法
• 形式仕様記述，検証，解析など

• 渡部研究室における研究の方向
- プログラミング言語設計やソフトウェア工学分野で発展してきた抽象化・モジュール化手
法を積極的に取り入れることで，形式手法をより身近で実用的なものにしたい．

• 渡部研における主なプロジェクト
- 定理証明⽀援系のための意味論を考慮に⼊れたライブラリ検索エンジン
- 同期的データフロープログラミングにおける逆計算の定式化と証明 [WCTP '24]
- 検証済みプログラムの進化と発展 [SAC'13]

13

https://www.psg.c.titech.ac.jp/posts/2024-11-04-WCTP2024.html
https://www.psg.c.titech.ac.jp/posts/2013-03-18-SAC2013.html

依存型の同型性を考慮した柔軟な単一化

• 型ベースのライブラリ検索
- 関数や定理を名前ではなく型で探す
• 例：HaskellのHoogle
- 既存の定義・補題・定理を再利用したい
- 従来手法では見つかるはずのものが見つ
からない
• 引数の順序，カリー化，前提条件の違い

• 例：

- 型の「形の違い」を吸収した検索が必要

• 提案手法
- 依存型同士の同型性を考慮した単一化
• 同じ意味をもつ型同士を同型とする

• 技術的中核
- 依存積型・依存和型の同型を法則として
組み込んだ単一化アルゴリズム

• 成果
- 柔軟で漏れのない型ベース検索
- 試作実装により実現性を確認

A → B → C ?= B → A → C

14

型の「見た目の違い」を超えて，本質的に同じ定理・関数を見つけるための単一化手法

[TyDe '25]

https://www.psg.comp.isct.ac.jp/posts/2025-10-12-TyDe2025.html

最近の卒業論文と修士論文
卒業論文（学士特定課題研究報告書）
2025
- 組込みシステムにおける型に基づく安全な周辺機器制御（鈴木季）
- 小規模組込みシステム向けFRP言語のためのデバッガの実装と評価
（松田活）

2024
- FRP言語における複数周期に対応する周期的イベント機構の実装（有
沢翼）

- 小規模組込みシステム向けFRP言語のためのバイトコードVMの実装
と評価（大谷悠豪）

- 分散システム向けFRP言語における部分的同期機構の実装（中村健太
郎）

- 量化子付きPT-DTLの効率的な実装（彦久保翔太）
2023
- REPLをサポートする小規模組込み機器向けFRP言語処理系の実装と
評価（鈴木豪）

- 組込みシステム向けFRP言語における離散イベント機構の実装とその
評価（十河健人）

修士論文
2025
- マイクロコントローラの省電力コプロセッサを活用できる動的型付け
言語の動的コンパイラ（鈴木豪）

- リアルタイムシステム向けFRP言語の設計とスケジューリング方式
（十河健人）

2024
- ハードウェアのモード制御を記述可能な小規模組込みシステム向け
FRP言語（瀧本哲史）

- 逆計算可能な同期的データフロープログラムの構成方式（白井瑞貴）
2023
- Glitch-Free Distributed Functional Reactive Programming in
Resource-Constrained Reactive Distributed Systems（居桂園）

- 関数リアクティブプログラミングにおける時間制約を持つイベント列
の形式的表現（堀紗知子）

- 状態依存動作の記述を支援するFRP 言語のための検証用モデル生成
手法（内藤博）

15

B4の1年
• 全体ゼミ（全員参加）週2回（曜日と時間は毎学期更新）
- 4月～9月はM1以上が発表．それ以降はB4も発表
- 前期は週2回のうち1回は輪講
• 輪講：4月～9月
- B4は全員参加．M1以上は任意（現状はほぼ全員参加）
• プログラミングプロジェクト：4月～5月
- プログラミング言語研究のためのトレーニングとして、簡単なプログラミング言語処理系
（インタプリタやランタイムシステム）の作成を行う

• 学士特定課題研究
- プログラミングプロジェクトが終わったあたりから

16

どんな人に向いているか
• プログラミング言語に興味のある人
- 言語設計と実装技術（コンパイラ，インタプリタ）
- 開発支援（プログラム解析，ツールなど）
- 理論（意味論，型システム，検証など）
- 低レイヤ（実行時システム，GC，JITコンパイラ，プロセッサ，回路）
➡圏論の勉強会からはんだ付けまでいろいろやっています
• 参考：最近の研究で使っている言語（全部使えなければダメというわけではない）
- OCaml, Haskell, Rust, C, C++, Ruby, Python, Erlang, Elixir, TypeScript, Scala, Nim
- Rocq (ex. Coq), Agda, Promela (Spin)

17

圏論勉強会

Emfrpのデモ用ハードウェア

