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Abstract

Reactive programming over a network is a challenging task
because efficient elimination of temporary violations of data
flow invariants, known as glitches, in a distributed setting is
still an open issue. In this paper, we propose a method for
constructing a distributed reactive programming system of
which runtime guarantees the properties of single source
glitch-freedom and the robustness against out-of-order mes-
sages. Based on the method, we developed a purely func-
tional reactive programming language XFRP whose com-
piler produces Erlang code. Using some examples, we show
that the proposed method is beneficial for constructing dis-
tributed reactive applications without suffering from incon-
sistencies.
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1 Introduction

Reactive Programming (RP) is a programming paradigm where
a system is described in terms of continuously changing time-
varying values and propagation of change[3]. In recent years,
RP has gained popularity in various fields: Web program-
ming (React, Vue, and many similar web frameworks), mobile
application development (React Native, RxJava, etc.), mobile
IoT networks[4, 19], and so on. Functional Reactive Program-
ming (FRP)[10] is a variant of RP where time-varying values
and/or their relationships are described in purely functional
expressions and thus a system is expressed in a declarative
manner.

The change propagation among time-varying values can
be classified as dataflow computation. From this viewpoint,
reactive programming provides a high-level and declarative
abstraction for describing concurrent systems. Thus, inte-
grating (F)RP with existing concurrent computation models
is interesting in both theoretical and practical aspects. One of
the authors proposed an actor-based execution model of an
FRP language for embedded systems, which can reduce the
execution cost of a program written in the language by utiliz-
ing asynchronous messages in the change propagation[24].
Van den Vonder et al. introduced another direction of in-
tegration named Actor-Reactor model that can widen the
expressiveness of a reactive programming language by using
actors to describe long-lasting or stateful behaviors[22].

Although the idea of integrating (F)RP and the Actor
model seems to be beneficial for describing distributed sys-
tems, there exist several obstacles to overcome. One of the
primary problems is glitches. A glitch is a temporal incon-
sistency in time-varying values (described in Section 2.2).
Methods for avoiding glitches have been proposed in the
existing literature[5, 9, 13, 16]. A straightforward solution is
to use a topological sorting of time-varying values in depen-
dency order. However, it is still an open problem to resolve
glitches in distributed systems with failures such as node
crashes, out-of-order messages, and lost/duplicate messages.

This paper provides a method for constructing distributed
reactive systems with the following properties: single source
glitch-freedom and the robustness against out-of-order deliv-
ery. Besides, we developed a compiler that translates from
XFRP, which is a purely functional reactive programming
language, into Erlang based on this method. We assume
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4. Application Layer
Web app, Mobile app, loT, ...

3. Reactive Framework Layer

Propagation of changes, Glitch avoidance

2. Actor Layer
Resource management, Scheduling, Node discov-

ery, Message delivery, Fault-tolerant mechanisms

1. Base Layer

Networking, Physical machines

Figure 1. Layers of Reactive System on Actors

that the message delivery mechanism adopted in this paper
obeys exactly-once delivery semantics, which means that a
message must arrive at its recipient and can neither be lost
nor duplicated. Discussion about other delivery semantics
(e.g., at-most-once delivery) is given in Section 9.1.

The main contributions of this paper are the following:

e We show that distributed systems can be easily con-
structed in a distributed FRP language with a practical
example.

e We propose a novel method that lets distributed reac-
tive systems free from glitches and the effect of out-
of-order delivery.

e We show a problem in history-sensitive values (cf. Sec-
tion 3.2) caused by single-source glitch freedom and
give a possible solution for it.

e We propose a mechanism of retransmission for the
solution of message losses in a reactive system and an
efficient algorithm for the realignment of messages.

The rest of this paper is organized as follows. Section 2
discusses the motivations for our work. Section 3 explains
the syntax and execution model of our language XFRP with
a small example. Section 4 and 5 present the algorithm of
XFRP. Section 6 discusses the problem of single source glitch-
freedom and also provides a solution. Section 7 discusses
the Erlang implementation of XFRP. A practical example
application is provided in Section 8. Section 9 proposes keys
to deal with message losses and the realignment of mes-
sages. Section 10 surveys related work for distributed RP and
Section 11 concludes the paper.

2 Motivation
2.1 Distributed Reactive Programming and Actors

The goal of this work is to develop a distributed execution
model of an FRP language and show that FRP is also bene-
ficial for describing distributed systems. Towards this goal,
we adopt the Actor model[2] as the runtime of the language.
The reasons are: (1) actors and asynchronous messages are
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suitable to represent time-varying values and the change
propagation[24], (2) actors can express such behaviors that
(pure) FRP is inconvenient to deal with[22], and (3) there
are already stable implementations of actor-based languages
and frameworks (e.g., Erlang, Akka) for constructing actual
distributed systems.

Figure 1 shows the conceptual model of distributed reac-
tive systems described in our FRP language with the actor-
based runtime. As the figure exhibits, a system is structured
in four layers.

The base layer is composed of low-level components: phys-
ical machines, CPUs, TCP/IP networks, etc. The layer also
includes concurrent execution abstractions provided by an
operating system such as processes or threads.

The Actor layer controls the executions of actors and the
message delivery. The examples of the tasks in this layer are
the placement of actors, message routing, execution sched-
uling, and fault-tolerant mechanisms (e.g., supervisors or
persistent actors). Though this layer seems to have numer-
ous tasks, we can utilize the existing actor-based languages
and frameworks.

The Reactive Framework layer maintains time-varying
values and performs the change propagation among them.
The layer also provides the mechanism for glitch-avoidance
(see Section 2.2). The mechanisms in this layer are the main
topics of this paper.

2.2 Glitch-Freedom

The avoidance of glitches is an important design considera-
tion for reactive programming systems. Glitches are temporal
inconsistencies that occur during the propagation of changes.
For example, consider the following program written in the
syntax of XFRP (see Section 3):

node x = a + a

node y = a x 2

node z = (x,y)
where a, X, y, z are time-varying values defined using key-
word node. In a glitch-free system, all occurrences of the
same time-varying value must have the same value at each
time point. Thus, we should always recognize that the first
and second elements of z are the same. The property does
not hold in a system with glitches. For example, consider a
situation that the value of a changes. There may be a mo-
ment that x and y observe different values for a, and thus
the elements of z are different.

Margara and Salvaneschi[15] classified glitch-freedom
into two types: single-source and complete. The former re-
quirement is that the update of a source is propagated to the
nodes that depend on it without glitches but other sources
are not considered at the update. The latter takes the causal
relation of all the sources into account in addition to the
requirement of the former. Let us explain the difference by
using a small example: node x = (a,b). The time-varying
value x is a pair of two independent sources (time-varying
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values) a and b, where a = 1 and b = 1 initially. Let us con-
sider that a becomes 2, and then b becomes 4. Single-source
glitch-freedom allows that x may change to (2,1) or (1,4) be-
fore it becomes (2,4) because the temporal order between
the changes of independent sources is ignored. On the con-
trary, complete glitch-freedom requires that x must change
to (2,1) before (2,4) because the order between the inputs is
preserved. In XFRP, basically single source glitch-freedom
is assumed but it also uses the concept of complete glitch-
freedom.

According to [3], distributed reactive programming sys-
tems have not achieved glitch-freedom yet because of net-
work failures, delays, and lack of a global clock. This paper
provides a novel method to tackle glitches in distributed
systems.

3 XFRP
3.1 Basics

XFRP is a general-purpose purely functional reactive pro-
gramming language developed as a successor of Emfrp[21],
which is designed for small-scale embedded systems. In
XFRP, a system (module) is composed of time-varying values
classified in the following categories: sources (inputs), sinks
(outputs), and nodes. Sources emit externally given values
such as keyboard inputs, network packets from another com-
puter, and measurements from a sensor device. Sinks are
the destinations of propagation. They receive results and
normally affect the outer world by displaying characters,
changing the voltage output, etc. Nodes lie between sources
and sinks and update their values by evaluating associated
expressions every time sources change. The definition of
an expression is given in a purely functional style, which
means it has no side effect or mutable states. In summary,
changes of sources propagate throughout nodes and finally
reach sinks.

Figure 2a shows a simple fan controller application taken
from [23]. The program has two sources tmp and hmd re-
spectively representing the current temperature [°C] and
humidity [%] measured by external sensors. The node di
calculates the temperature-humidity index (the degree of dis-
comfort experienced by humans), and the truth value of fan
changes based on the value. If the value of tmp changes, di
detects it immediately and recalculates the index, followed
by the recomputation of fan.

The graph in Figure 2b represents the dependency on time-
varying values (sources, sinks, and nodes). An arrow from x
to y means that x is in the definition of y. The structure of the
graph corresponds to the flow of propagation as explained
above. The graph must be directed acyclic, that is, has no
cycles because changes will propagate infinitely if the graph
has a cycle. However, a cycle is allowed if it has a dependency
relation with @last, which is explained in the next section.
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module FanController % module name
in tmp : Float, % temperature sensor
hmd : Float % humidity sensor
%

out fan : Bool fan switch

% threshold
const th = 75

[ R N R O

9| % discomfort (temperature-humidity) index

10 | node di = 0.81 * tmp +

11 9.01 * hmd * (0.99 * tmp - 14.3) + 46.3
12
13 | % fan status

14 | node fan = di >= th

(a) XFRP Source Code
o >—(s1)
hmd

(b) Graphical Representation of Module
Figure 2. A FanController Module

3.2 History-Sensitive Values

All expressions in XFRP are pure and the language provides
no destructive assignments. This means that each node can
hold only the current value of itself, i.e., there is no way
to express states. However, this restriction makes it hard
to express even simple calculations such as counting the
number of inputs or summing up values.

To overcome the above restriction, XFRP provides an op-
erator @last as Emfrp[21]. For a node n, n@last represents
the previous value of n. For example, a node sum that sums
up a source a can be written as

node init[@] sum = a + sum@last

where init[0@] is a specifier of the initial value of the node.
At the very beginning of the program execution, the value
of sum@last is 0. In this example, @last is used within the
definition of the node (sum) to refer to the previous value of
the node itself. However, the operator @last can be applied
to arbitrary nodes in the program.

Although the syntax of XFRP does not allow expressions
like n@last@last, the equivalent expression can be defined
by introducing another node as:

node n1 = n@last

node n2 = ni@last
where n1 is the previous value of n and n2 is the next-to-last
value of n.

The concept of @last originates from a higher-order func-
tion known as foldp existing in some FRP platforms, which
takes a starting value and an accumulation function and cal-
culates a new value on each change (See [6] for a detailed
description). As discussed above, @last can be applied to ar-
bitrary nodes and thus is more general than foldp. We also
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Expressions
e = ¢ (constants)
| fle, ..., € (function call)
| if e theneelsee (condition)
| leti=eine (binding)
| caseeofp->e; ... ;p->e (matching)
| Ce, ..., el (arrays)
| (e, ..., €) (tuples)
| n (nodes™)
| nelast (nodes (last)™)
(*usable only in the definitions of nodes)
Definitions
d = fun f(:7, ...,it7) =e¢ (functions)
| consti:r=e (constants)
| node [init[el] n:7t=e (nodes)
Modules
m == module i (module name)
inn:t, ..., n:7 (input nodes)
out n:r, ..., n:7 (output nodes)
d* (definitions)
Types
7 == Unit|Int|Float | Char |Bool (base types)
| [r] (arrays)
| (r, ..., 1) (tuples)

Figure 3. Syntax of Basic XFRP

believe that @1ast is more intuitive and easier to understand
than foldp.

3.3 Syntax

Figure 3 shows the abstract syntax of XFRP. We let the
metavariable i ranges over identifiers unique in a program,
n ranges over identifiers used as node names, p ranges over
pattern expressions (e.g. (a,b) or x: :xs), and ¢ ranges over
constants. Constants include numbers, boolean values (True
or False), unit!, constant names, and tuples or arrays of
constants. Expressions are similar to those of ML, but notice
that closures (functions) are absent because it cannot be used
as time-varying values. Instead, named function declarations
like that of C or Java are introduced. The node names (refer-
ences to nodes) can only be used in node definitions because
functions and constants should be pure and deterministic
over time.

XFRP is a statically typed language with type inference.
Thus, the type annotations in definitions can be omitted if
these types are deducible. Unlike some FRP languages that
have special (builtin) types for time-varying values such as
Signal[T] (in REScala, for example), XFRP does not provide

Ithe unique value of the type Unit
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such dedicated types at least in the syntax as in Emfrp. In
XFRP, we can use names of time-varying values as if they
were normal (non-time-varying) values. In other words, we
do not need to use explicit lift functions that map normal
values to time-varying values. This design greatly simplifies
the programming process in XFRP. The formal rules of the
type system of XFRP are out of the scope of this paper, and
it will not be discussed further.

3.4 Execution Model

This subsection describes the execution model of XFRP, which
is based on the Actor model. In contrast to our previous
work[24] that introduced an actor-based runtime system
for resource-constrained uniprocessor systems, we consider
distributed execution in this work.

In XFRP’s runtime, each time-varying value is realized
by one actor. These actors are initialized when and only
when the program starts. The propagation graph is fixed
during execution, although the network topology in the
Actor model, in general, is dynamic. The dynamicity in this
language remains future work.

When a time-varying value changes, a message with the
changed value is sent to all the nodes (actors) that depend on
the value and the receiver nodes recompute their expression
and also send the results to the downstream (Push-based
FRP). The way of communication between actors is asyn-
chronous (no waiting for an acknowledgment) and has no
requirement on the order of message arrival, which models
delaying or flipping packets in a network. Thus, the order of
sink values may differ from that of the sources. For instance,
if the order of an input is 1 — 2 — 3, the output may be
2 >3 —>1lor1— 3 — 2. For further discussion on the
realignment of arrival messages, see Section 9.2.

In this paper, we do not deal with node failure (crashes)
or message dropping, namely, nodes are persistent and mes-
sages eventually reach the destination in this model. Sec-
tion 9.1 discusses this topic.

The notion of an iteration, i.e., an end-to-end synchronous
evaluation cycle, which exists in some FRP languages such
as Emfrp[21], does not in XFRP. In such an iterative model,
inputs are processed one by one throughout the system,
that is, a new input value does not propagate in the graph
until the previous one reaches the sink. In contrast with such
synchronous executions, in XFRP, nodes process input values
asynchronously without waiting for messages to reach the
destination. In a distributed setting, this execution model
can make the latency of a system lower, compared to the
iterative model.

3.5 Host Specifier

In XFRP, we can specify the hostname of a machine where
nodes are to be placed. The format of hostnames is platform-
dependent. In our compiler (Section 7), they are written
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in
{a@hostname} x : Int, y : Int,
{b@hostname} z : Int

{a@hostname} node r
{b@hostname} node s

X ty
z

Figure 4. Host Specifiers

like name@host in accordance with the specification of a
distributed Erlang system[1].

Host specifiers are placed before the definitions” of nodes
and sources as in Figure 4. An unspecified node inherits the
host of the previous definition. If any host is not specified
for the nodes, a system works on a single local node.

4 Preliminaries
4.1 Dependency

We introduce some dependency relations on time-varying
values. Let ny and n; be time-varying values (sources, sinks,
or nodes). We use n;y —¢ nj to express that the name of n; oc-
curs in the definition (expression) of n,. Similarly, n; — n,
means that the expression n;@1last occurs in the definition
of ny. For example, if x is defined as node x = y + z@last,
bothy —¢ x and z — x hold.

We also define the relation — as the union of —¢ and
—p,le,n; — ny © n; —¢ ny Vny —p ny. The binary
relations —¢, —1, and — are not transitive; e.g., ny — ny
and n, — n3 does not imply n; — nj. As usual, —»* indicates
the reflexive and transitive closure of —. The roots of a node
are sources whose changes affect it. Let Source be the set of
sources in a program. The set of roots of node n is defined
as Root(n) = {i € Source | i —>* n}. Note that Root(i) = {i}
holds for any i € Source. This means that a source does not
depend on other sources or nodes.

The dependency graph of an XFRP program is a directed
graph whose vertices are the union of sources, sinks, and
nodes, and edges are represented by —. By restricting the
edges of the graph to — ¢, we should obtain a DAG. In current
XFRP, the graph is constructed at compile time and it does
not change its structure at runtime. The dynamic evolution
of the dependencies is left for future work.

4.2 Versions

Each source has its own counter which is incremented when
a new value is produced. A version is a pair of the identifier
of a source (root) and its counter, e.g., the version of a source
named “pulse” that has produced values three times is rep-
resented as (pulse, 3). The number of a version starts from
zero.

Versions are attached to messages propagated through
nodes to track the happened-before relation between changes
of sources, sinks, and nodes, which realizes glitch-freedom. A

2This syntax is not contained in Figure 3 for simplicity.
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message has exactly one version that is not modified before
it reaches a sink except that source unification (explained in
Section 6) occurs.

4.3 Data Format

As described in Section 3.4, in the runtime of XFRP, each
node (or source, sink) is represented as an actor. The state of
such an actor (say n) is a triple (Buffer,, Last,, Deferred,,).
Buffer retains the input values that have been received but
have not yet been processed. It is an associative array that
maps a version (see Section 4.2) to the fields of values. Last is
the fields of values that was received last time. When a new
value arrives, the values that are independent of the roots of
the received value are used to compute. Deferred is a list of
root identifiers and used in nodes with two or more roots to
wait for the arrival of all the required inputs.

The format of a message is a triple of the identifier of a
sender node, a current value of the node, and its version. For
example, if a node n changes its value v by receiving a new
input with a version (i, 1), it sends a message (n, v, (i, 1)) to
downstream.

5 Updating Algorithm

This section describes the change propagation algorithm
used in XFRP runtime. Our algorithm, shown in Algorithm 1,
is similar to the DREAM algorithm (the single-source glitch-
freedom variant)[15] in the following points: “attaching ver-
sions to time-varying values”, “the guarantee of glitch-freedom”,
“the message-passing system model”, and so on. The main
differences are the explicit handling of a (last) state and the
capability for out-of-order messages.

The algorithm consists of two parts. The former is the
initialization of each actor performed just after it is spawned.
The latter is the behavior of an actor that continuously runs
on each node. The procedure is divided into two parts: 1)
matching a set of messages from the Buffer, calculating the
change and propagating the result again and 2) waiting for
a message and storing it into the Buffer. The reason why
receiving comes after matching is to avoid deadlocks that
may happen in a situation like Figure 5a. If y starts receiving
at first in this program, it waits forever and no one in the
system can proceed because x also waits for y but y sends
nothing until a message arrives. Conversely, if y starts from a
matching phase, the field x@last is matched in the initialized
Buffer of y first, then it sends the result to x and also to y
when it receives a signal from in.

The behavior is written in a process-based Actor style
like Erlang, which is one variation of the Actor model and
uses ‘receive’ as a blocking operation[12]. However, the
program can be easily adapted for other models of Actors
such as Akka’s event-based non-blocking receive.

Remember that “{k — v}” is a notation of an element
of an associative array whose key is k and value is v and
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Algorithm 1 XFRP for Actors

Procedure 1: Initialization
1: for all n € Node’ do
2:  for s € Source do

3: for m; € {m € Node’ | m - n As =% m} do
4 Buffer, [(s,0)] +=
{my@1last — (init value of my) }
5: end for
6: end for
7: end for

Procedure 2: For each node (including sink node) n,
1: O:={0 € Node'|n — o}
2: loop

3. // Phase 1: Matching

4 for all {(s,v) — M,,} € Buffer, do

5: M :={i € Node’ U Source | i > nAs —" i}
6: if M = keys(M;,) then

7: R:=Last, \ M

8: if RUM = {i € Node’ U Source |i — n} then
9: e := compute(R U M)

10: send (n, e, (s,v)) to O

11: if Deferred,, # 0 then

12: for d € Deferred,, do

13: send (n, e, d) to O

14: end for

15: Deferred,, « 0

16: end if

17: Buffer, « Buffer, \ M,

18: Last,, « Last,, U My,

19: else

20: Buffer, <« Buffer, \ M,

21: Last, « Last, U M,

22: Deferred,, < Deferred,, U {(s,v)}
23: end if

24: end if

25:  end for

26:  // Phase 2: Waiting for Receive
27 (risre, (rs,10)) := receive()

28: if r; —»¢c nthen

29: Buffer, [(rs,r,)] +={ri > re }

30:  end if

31:  if r; = nthen

32: Buffer, [(rs, 1o + 1)] +={ri@last — r. }
33:  end if

34: end loop

(Note: Node” = Node U Sink)

“Buffer,[(v, i)] += { k > v }” has a meaning of appending a
value v to a field k of a version (v, i) in Buffer,,.

The rest of this section focuses on these procedures and
phases in detail.
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e ()
D00 RO
()
(a) (b)
Figure 5. Graph of Dependency with @last

5.1 Initialization

In the initialization, the initial values of nodes are set on
the nodes that use them with @last in their definitions. For
example, the initialized Buffery in a program as described in
Figure 5b is

{(in1,0) > {x@last > X;nis},
(in2, 0) (i {y@laSt [ yinit}}’

where X;,;; and y;n;; are the initial values of them.

5.2 Phase 1: Matching from Buffer

In Phase 1, an actor searches a set of input values that
are enough to evaluate the expression from its Buffer and
then sends the updated value to the nodes depending on it.
Matching (Line 4) is performed over every entry of Buffer
ordered by the colexicographic ordering of version pairs:
(n,v)<(n,v) = (wW<v)V(@=v An<n').

Three cases of conditions as below are possible for each
version in Buffer:

1. The input values whose root is this version are insuffi-
cient to calculate the update,

2. The input values whose root is this version are suffi-
cient but the rest of the values in this node are insuffi-
cient,

3. All the values are sufficient and ready to be calculated.

In the first case, it does nothing and (conceptually) waits
for further messages to arrive. In the second case (Line 20-22),
the process of evaluation and propagation is delayed until
this case proceeds to the third one by adding the current
version (s, v) to the list Deferred (Line 22). At this time, the
entry of this version is removed from Buffer (Line 21). In
the last case (Line 7-18), an actor evaluates the expression
by using the values of the field in Buffer (M) and the ones
whose roots are independent of this version (R) (Line 9). After
that, it sends the result to the depending nodes (Line 10). If
there are delayed versions, it also sends the values with these
versions (Line 11-16). The entry of this version is removed
from Buffer and Last is updated at the end (Line 17-18).

5.3 Phase 2: Receiving Message

After a matching phase, an actor waits for messages. When
a message comes, it is stored in the field corresponding to
the version in the Buffer (Line 29, 32). A node value used
with a @last operator is placed on the next version of it.
In Figure 5b, for example, if d receives (x, 10, (in1, 3)) from
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in in1 : Int, in2 : Int

out y : ((Int,Int),(Int,Int))
node init[(0,0)] x = (in1,in2)
node y = ((in1,in2), x@last)

Figure 6. Example Program with Inconsistencies

inl

in2 -

Figure 7. Source Unification

the node x, a map {x + 10} is added to the field with key
(in1,4) in Buffery.

6 Problem of @last Operator
6.1 Inconsistency with @last

As the model adopts single-source glitch-freedom in values
and node states, there is a problem of the nondeterminism
in @last versions, which leads to inconsistencies.

Let us take an example (Figure 6). The node x merges
two inputs a and b, and y refers to the last value of x and
also these sources. We assume that both a and b send their
sequential counters (e.g. 0, 1, 2 ....) and they have already
emitted initial values 0. Then, Buffer, becomes

{(in1,1) — {x@last — (0,0)},
(in2,1) — {x@last — (0,0)}}.

In Buffer,, a field x@last exists in two different versions.
This type of branches of versions can cause an inconsistency.
In fact, if another value 1 is sent from in1 and two nodes
update the change, Buffer, becomes

{(in1,2) — {x@last — (1,0)},
(in2,1) — {x@1last — (0,0)}},

and it is said that two different @last values of x exist in
a node y. The problem is caused because of the requirement
of glitch-freedom per source but this counterintuitive state
may lead to an unexpected behavior.

To guarantee single-source glitch-freedom with stateful
nodes, we impose a limitation that the number of the roots
of a node that is used with a @last expression is at
most one. Formally, it is required to satisfy the following
equation:

Vn € Node.[[EIm € Node.n —|, m] = |Root(n)| <1

where [X] is a cardinal number of a set X. The dependency
graph of Figure 6 apparently violates this, while that of Fig-
ure 5b is valid because the root of x and y is unique.
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6.2 Source Unification

The limitation of @last is considered so strong that it be-
comes difficult to implement practical applications. Then, a
mechanism of merging multiple inputs into one single source
is introduced in order to avoid the constraint, and we call it
source unification.

Programmers specify which inputs to be unified explicitly
in a code, like Line 5 in Figure 8. A unifying source node is
placed just after the target inputs internally as illustrated
in Figure 7. The node receives messages from the original
inputs and forwards to the nodes which depend on them
with replacing the versions of them. A unifying node has its
own version counter that is attached to an outgoing message
and it is incremented when a new message is sent. Also,
it is expected to realign received messages in causal order
before forwarding. For example, the inputs in1 and in2
emit values: v; with a version (in1, 0), v, with (in1, 1), v;
with (in2, 0), and v, with (in2, 1), then even if the node
unified receives them in any order, the node sends from v;
to v4 in sequence with changing the versions of them into
(unified, 0), (unified, 1), (unified, 2), and (unified, 3).
Formally speaking, unification transforms partially ordered
versions into linearly order, which enables a stateful node to
determine “its last value”

7 Implementation

Our compiler of XFRP?, which is implemented in OCaml,
translates a module into a single-source Erlang code. It gen-
erates the behaviors (functions) of actors (processes) for each
node and input, a procedure of initialization, and the user-
defined functions that provide values to the sources (in/1%)
and receive values from the sinks (out/2). The function in/1
takes one argument of the hostname of sources and is defined
for every host to give values to the source in it. Normally the
function is infinite recursive and continuously emits input
values. The function out/2 takes two arguments of the name
of a sink and a value provided by it. The function is called
every time the value of the sink changes. Examples of these
functions are shown in Section 8.

The distribution mechanism places actors on hosts con-
nected via TCP/IP networks. The name of a host is specified
as explained in Section 3.5 and used in the first argument
of spawn, which is a builtin function that creates a process
at a specified host. When an actor is spawned, it waits for
the other actors to be initiated before it starts the process of
Algorithm 1.

8 Example Application

Figure 8 is an example code of a simple collaborative real-
time editor. As shown in Figure 9, the system consists of two
clients and one server. Each client has a physical keyboard as

3https://github.com/45deg/distributed-xfrp
4 A function named f with arity N is often denoted as f/N in Erlang.
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module CollaborativeBoard
in
{client1@hostname} keyl : Char,
{client2@hostname} key2 : Char,
unify (key1l, key2)
out
board : ([(Int, Int)], [((Int, Int), Char)Il)

[ R N R N O

9 | fun assoc_update(key, value, list) = ...
10 | % list#{ key => value }

11
12 | fun movebykey(pos, key) = ...

13 | % update the position by the arrow key pressed
14
15 | fun update_buf(pos, key, buffer) =

16 if (' ' <= key && key <= '~') % is printable?
17 then assoc_update(pos, key, buffer)
18 else buffer

19
20 | {client1@hostname}
21 | node init[(0,0)] posl = movebykey(posl@last, keyl)

23 | {client2@hostname}

24 | node init[(0,0)] pos2 = movebykey(pos2@last, key2)
25
26 | {server@hostname}

27 | node init[[]] buffer =

28 let b1 = update_buf(posl, keyl, buffer@last) in
29 let b2 = update_buf(pos2, key2, b1) in
30 b2

31 | node board = ([posl, pos2], buffer)

Figure 8. CollaborativeBoard code

clientl@hostname

board

ED W

client2@hostname

Figure 9. Graphical Representation of CollaborativeBoard

a source and the server has a sink that is a board displaying
the editing text along with two cursors corresponding to the
clients.

The source named keyN corresponds to the keyboard for
the client N (N = 1, 2) and a stateful node posN represents
the cursor position (row, column) of client N, which can be
moved by arrow keys. The node buffer has a list of merged
inputted characters with their positions.

Since the node buffer has a @last reference, the roots
of the node (key1 and key2) should be unified (Line 5 in
Figure 8) as discussed in Section 6.2. If they are not unified,
the history of buffer will have two branches corresponding
to both roots. This implies that as if there were two indepen-
dent buffers per client. In this case, the board only displays
one of the buffers at a time. When there is an input from the
client corresponding to the other (hidden) buffer, the board
immediately switches to it. However, this is not the expected
behavior of the collaborative editor.

Kazuhiro Shibanai and Takuo Watanabe

1| in(Host) ->

2 Target = case Host of

3 'clientl@localhost' -> keyl,

4 'client2@localhost' -> key2

5 end,

6 Target ! @, % an initial pulse

7 in_loop(Target).

8 | in_loop(Target) ->

9 Target ! getchar(), % wait for key input
10 in_loop(Target).

11 | out(board, {L[{X1,Y1},{X2,Y2}]1,Board}) ->
12 lists:foreach(fun ({{X, Y}, C}) ->

13 putchar(X,Y,C)

14 end, Board),

15 putchar (X1,Y1,$I), % cursor 1

16 putchar(X2,Y2,$I), % cursor 2

17 refresh().

Figure 10. External I/O Code in Erlang

Here we focus on the expressions of nodes. Appeared
in pos1 and pos2, which holds the positions, a function
movebykey takes a position and a key code and returns a mod-
ified position if an arrow key is pressed. Otherwise, it returns
the position without changes. assoc_update(key, value,
list) is a utility function that returns the list of pairs list
with replacing the second element of a pair whose first ele-
ment is key with value. That is, assoc_update(k,v,[...,
(k,ve), ... =L[..., (k,v), ...] By using this helper
function, update_buf (pos, key, buffer) replaces a char-
acter in the position pos in buffer if the input key is a
printable ASCII character. The buffer is updated by inputs
from two and calculating with update_buf.

To provide inputs and display the result, we need to im-
plement external I/O capabilities in Erlang. Figure 10 is a
code of example I/O definitions. The input functions in/1
and in_loop/1 poll key inputs after sending a dummy value,
which lets the inputs of buffer sufficient. Note that these
functions are distributed and invoked on every client. The
function out (board, V) is called when the value of board
is changed. The first argument of an output function is an
atom (a literal constant in Erlang) of the name of a sink,
so programmers can handle with the value of each sink by
pattern matching with the argument.

9 Discussion
9.1 Handling of Message Losses

The execution model proposed in this paper can accept the
out-of-order message delivery but cannot handle the lost of
messages. Even a single message drops, the computations in
the system may stop, especially a @last operator is in the
definitions.

One of the solutions for this issue is to introduce an auto-
matic repeat-request mechanism. In this protocol, a sender
waits for an acknowledgment from the receiver after it sends
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Figure 11. Results of Experiments on Realignment

a message and resends it if the actor receives no acknowl-
edgment after a while. The concept of this method is orig-
inated from Selective Repeat ARQ[11]. Note that this pro-
tocol merely guarantees the at-least-once delivery, so some
mechanism is required to discard duplicate messages. As all
propagation messages have ACKs, the number of exchanged
messages between actors are two or more times that of the
original.

Since this type of problem has been actively studied in the
field of distributed systems for a long time, more solutions
can be considered, e.g. using the hybrid of push- and pull-
based propagation, delegating the guarantee to a runtime
layer of the language, or using an existing delivery method
like that of Apache Kafka or RabbitMQ[7].

9.2 Realignment

In some applications, it is expected that the output of the
system should be ordered by happened-before relations. It is
easy to modify the algorithm for this requirement. One solu-
tion is to make a status field which holds the latest versions
where the update have been processed and to add another
requirement to a matching phase: it accepts only a message
whose version is the next of the latest version in the node.
However, it can be achieved by the realignment of the sink
nodes only instead of all the actors. A question is which is
efficient with respect to latency and buffer usage. We con-
ducted a simple experiment for that.

In this experiment, a system has one source, one sink,
and 100 nodes between them. The intermediate nodes are
randomly connected by current node references and have
no cycles. In the network, the source sends 100 messages at
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the same time and all nodes postpone sending until 0-1000
milliseconds to simulate network delay. We measure latency
(the time interval of the propagation from the source to the
sink) and buffer size (the total number of pending versions in
every Buffer.) for two methods: the realignment mechanism
works (A) on each node and (B) only the sink node. The
evaluation was conducted on a single machine (MacBook
Pro Retina 13-inch Early 2015, 2.7 GHz Intel Core i5, 8GB
RAM), using Mac OS X 10.13.6 and Erlang/OTP 20.

Figure 11 shows the result of them. The average latency
of the (B) is about 1.54 seconds smaller than (A). In (A), the
interval between the first and 100th message arrival time is
1.918 seconds, while it is 0.961 seconds in (B). In addition,
the buffer size of (A) is nearly 1500 at the peak, while that of
(B) is smaller than 1000.

The result shows that the realignment should be done in
the sink nodes. However, it is possible that realignments in
all nodes are efficient in some complex graphs. Hence, more
intensive research is needed for this topic.

10 Related Work

A plenty of reactive programming platforms or languages
have been proposed for many years[3]. We mainly focus on
those that are aimed at distributed systems in this section.

DREAM][ 14, 15] is a distributed reactive middleware that
provides elective consistency models: FIFO, causal, single-
source glitch freedom, and complete glitch-freedom, but they
assume that all messages are delivered in a FIFO order.

REScala[20] is a functional reactive library implemented
in Scala. SID-UP (Source IDentifier Update Propagation)[8, 9]
is an efficient propagation algorithm for distributed reactive
programs in REScala and it supports complete glitch-freedom
while the execution model is iterative, as discussed in Sec-
tion 3.4.

Recently, a new method for REScala is proposed[17] and
it provides fault tolerance for distributed reactive program-
ming with reasonable performance. Besides, Myter et al.[18]
proposed another method for handling partial failures in
distributed reactive systems. However, these methods focus
on node crashes rather than on network inconsistencies.

AmbientTalk/R[4] is an Actor-based reactive program-
ming language designed for unreliable network and dynamic
network structure, but it is also not glitch-freedom.

Quarp[19] is a mechanism for distributed reactive pro-
gramming formalized by operational semantics. It appends
meta-information to messages between nodes capturing the
context of the value. By giving the version of the value to the
context, glitch-freedom can be achieved. However, it does
not have an operation equivalent to @last.

11 Conclusion

In this paper, we proposed a new distributed functional reac-
tive programming language XFRP and an updating algorithm
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for the actor-based runtime of the language. The algorithm
guarantees single-source glitch-freedom in a distributed sys-
tem with the existence of out-of-order delivery of messages.
An example shows that practical distributed reactive appli-
cations can be easily created in XFRP. The discussion about
retransmission implies the possibility that the proposed algo-
rithm can be extended to cope with other message delivery
models.

There are several tasks left for future work. One is the
improvements in language features. Since nodes in a system
are static in the current XFRP specification, they cannot be
duplicated or moved to another machine and have no mech-
anism for joining and leaving the network. Such features
may extend the range of applicability of this language, e.g.
decentralized multiparty services, massive-scale sensor net-
works, or real-time stream processing. Another issue is to
make the algorithm capable of other fault models such as
node crashes or message missing. To cope with these faults
while keeping glitch-freedom is an important task for future
research.
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